
An Automated Approach to
Behavior Space Exploration
A Proof-of-Concept for Game Development

Joshua Moelans

Promotor: Prof. Hans Vangheluwe

Co-Promotor: Prof. Clark Verbrugge

Assistant Adviser: Randy Paredis

Dissertation Submitted in June 2024 to the
Department of Computer Science
of the Faculty of Sciences, University of Antwerp,
in Partial Fulfillment of the Requirements
for the Degree of Master of Science.

Ansymo
Antwerp Systems and Software Modelling

Contents

List of Figures iv

List of Tables vii

Acknowledgements viii

Abstract ix

Nederlandstalige Samenvatting x

1 Introduction 1
1.1 Motivation . 2
1.2 Contributions . 2
1.3 Technical Remarks . 3
1.4 Outline . 4

2 Related Work 5
2.1 Parameter Tuning With XVGDL+ 5
2.2 Strategic Diversity . 6
2.3 RPSPA . 6
2.4 Reveal-More . 7
2.5 Statechart-Based AI in Practice 7

3 Building the Game 8
3.1 Choice of Game and Engine . 8

3.1.1 Introduction to Godot . 12
3.2 Building the Game’s Systems . 13

3.2.1 Design Overview . 13

i

3.2.2 Manager Structure . 14
3.2.3 Visuals . 14
3.2.4 Unit AI . 15
3.2.5 Pathfinding . 17
3.2.6 Player Controls . 17

3.3 Simulation Preparation . 18
3.3.1 Game State . 18
3.3.2 Saving and Loading . 19
3.3.3 Instancing . 19
3.3.4 In-Game vs. Across-Game 20
3.3.5 Performance Comparison 22

4 Building the Framework 25
4.1 Framework Approach . 25
4.2 Generic Framework . 26

4.2.1 Generic Parameters . 26
4.2.2 Generic Optimizer . 26

4.3 Game Improvement Proof-of-Concept 28
4.3.1 Simulation Parameters . 28
4.3.2 Simulation Output . 28
4.3.3 Derived Framework . 29
4.3.4 Optimization Algorithms 31

5 Game Optimizer Experiments 33
5.1 Basic Communication Strategy 33

5.1.1 Problem . 34
5.1.2 Optimization . 35

5.2 Alternative Scoring Metric . 38
5.2.1 Problem . 38
5.2.2 Optimization . 39

5.3 Improved Communication Strategy 40
5.3.1 Problem . 41
5.3.2 Optimization . 41

5.4 Vision Cone . 44
5.4.1 Problem . 44
5.4.2 Optimization . 44

6 Conclusions and Future Work 50
6.1 Contributions . 50

6.1.1 Optimization Framework 50
6.1.2 Proof-of-Concept Experiments 51

6.2 Future Work . 52

ii

6.2.1 Using Metrics for Game Difficulty 52
6.2.2 Statechart Code Generation 52
6.2.3 Cooperative Pathfinding 53
6.2.4 Learning Player Movement 53
6.2.5 Additional Optimizer Experiments 54

Bibliography 58

Appendices 66

Appendix A Additional figures 67
A.1 Game State Output . 67

Appendix B Additional Tables 69
B.1 Combat Shooter Games - User Reviews 69

iii

List of Figures

3.1 Screenshot of the game. 11
3.2 Game engine popularity in the Global Game Jam. Adapted

from [1]. 11
3.3 A general overview of the game design. 14
3.4 Screenshot of the game. 15
3.5 Statechart of unit AI. 16
3.6 In-game instancing showing a full grid of 5 × 5 = 25 game scenes. 20
3.7 In-game instancing showing a non-full grid of 7 game scenes. . . 20
3.8 Across-game instancing showing four compiled games running

side-by-side. 21
3.9 In-game multi-instance performance comparison plot. Higher

average Frames Per Second (FPS) is better. 22
3.10 Across-game multi-instance performance comparison plot. Higher

average Frames Per Second (FPS) is better. 24

4.1 Class diagram of Generic Parameters and Generic Parameter
classes. 27

4.2 Class diagram of the Generic Optimizer. 27
4.3 Python code showing an example GameParameters class defini-

tion. 28
4.4 Abbreviated state used for basic game scoring. 29
4.5 Python code for basic game scoring. 29
4.6 Class diagram of the Game Optimizer (inheriting from the Generic

Optimizer). 30
4.7 Python subprocess call to run the game with given arguments. . 31
4.8 Game logs folder structure. 31

iv

5.1 Collision shapes visualized in red for ally and enemy units. . . . 34
5.2 Notify-on-attack experiment results. Points labelled with (com-

munication count, communication delay). 36
5.3 Notify-on-attack heatmap. Points labelled with average score

of that (delay, count) parameter pair. A lower score is a better
result. 36

5.4 Notify-on-attack experiment results with alternative parameter
bounds. Points labelled with (communication count, communi-
cation delay). 37

5.5 Notify-on-attack with alternative parameter bounds heatmap.
Points labelled with the average score of that (delay, count)
parameter pair. A lower score is a better result. 37

5.6 Cross-fire behaviour of enemy units. 38
5.7 Python code for alternative game scoring using weighted metrics. 39
5.8 Notify-on-attack experiment results with weighted scoring met-

ric. Points labelled with (communication count, communica-
tion delay). 40

5.9 Notify-on-attack with weighted scoring metric heatmap. Points
labelled with an average score of that (delay, count) parameter
pair. A lower score is a better result. 40

5.10 Visualized opponent engagement before notification of friendly
units. 42

5.11 Visualized tactical movement of lower two enemy units. 42
5.12 Improved communication protocol experiment results. Points

labelled with (communication count, communication delay). . . 43
5.13 Improved communication protocol heatmap. Points labelled

with an average score of that (delay, count) parameter pair.
A lower score is a better result. 43

5.14 Python code showing an example GameParameters class defini-
tion. 45

5.15 Class diagram of the Vision Cone Optimizer (inheriting from
the Game Optimizer). 45

5.16 Comparison of two approaches to the Vision Cone implementation. 46
5.17 GDScript code showing the circle sector vision cone computation. 47
5.18 Vision cone experiment results. Points labelled with (vision distance,

vision angle). 48
5.19 Vision cone heatmap. Points labelled with an average score of

that (angle, distance) parameter pair. A lower score is a better
result. 48

6.1 Visualization of vision cone and accompanying A* grid weights
for line-of-sight avoidance. 55

v

6.2 Visualization of incoming attack vector and resulting tactical
reposition vector. 56

6.3 Visualization of different tactical formations for squadron move-
ment. 57

vi

List of Tables

3.1 An overview of popular video game genres with example games,
and their scores on reactive commandeering and/or autonomous
behaviour/AI. Amount is measured from small to large : © <

	 < � < ⊕ < ⊗ . 9
3.2 In-game multi-instance performance comparison. Higher aver-

age Frames Per Second (FPS) is better. Entries with a * have
higher variance in FPS, with frame hops and frame drops (going
far above/below the average). 22

3.3 Across-game multi-instance performance comparison. Higher
average Frames Per Second (FPS) is better. 23

5.1 communication count parameter attributes. 34
5.2 communication delay parameter attributes. 34
5.3 vision distance parameter attributes. 47
5.4 vision angle parameter attributes. 47

B.1 Table of negative user reviews mentioning AI for Ready or Not,
SWAT 4 and Spec Ops: The Line. 69

vii

Acknowledgements

I want to start by thanking my promotor and co-promotor, Professors Hans
Vangheluwe and Clark Verbrugge. They introduced me to the world of theo-
retical studies on video games, which perfectly intertwines my two interests of
software engineering and gaming. Getting the freedom to explore this field for
my thesis has been a real joy, which would not have happened without them.

Next, my thesis supervisor Randy deserves a thank you; without his con-
tinuous support and feedback, this thesis would have surely been way less
academic and well-structured.

A lot of love and appreciation goes out to my friends, both the old-schoolers
as well as the new ones who joined me during these fascinating years at uni-
versity. Without you all, staying sane and motivated would have been quite
the challenge.

Lastly, I want to thank my mom, dad, moeke and oma for providing finan-
cial, emotional, nutritional and unconditional support throughout my entire
academic career. Thanks for letting me find my way at my own pace, and for
giving me the opportunity to pursue a degree.

viii

Abstract

In modern technology, optimizations show up everywhere. From designing sys-
tems to training artificial intelligence, some aspects will always need a search
for optimal values. However, within the enormous video game industry, prac-
tical research for automated optimisation methods is rare. Often only the
theory is explored, or an academic setting is provided, even though commer-
cial games are built using commercial tools. Hence, this thesis explores both
these aspects; the former is done by providing a generic optimization frame-
work that can work with any game, simply by providing in- and outputs of the
specific environment to be optimized. The latter is achieved by building a small
proof-of-concept video game in the commercially viable Godot Engine, which
can then be optimized by the framework. Through a series of iterative exper-
iments, it is shown how the symbiosis of game development and automated
optimization can lead to insights whilst keeping the need for manual testing
low. This can lower the barrier to entry for independent game development
studios by reducing the need for costly external game testing.

ix

Nederlandstalige Samenvatting

In moderne technologie komen optimalisaties overal voor. Van het ontwer-
pen van systemen tot het trainen van artificiële intelligentie, er zal altijd een
zoektocht naar optimale waarden bestaan. Binnen de enorme videogame-
industrie is praktisch onderzoek naar geautomatiseerde optimalisatiemetho-
den zeldzaam. Vaak wordt alleen de theorie onderzocht of worden praktis-
che toepassing louter in een academische setting getoond, terwijl commerciële
games worden gebouwd met behulp van commerciële tools. Vandaar dat deze
thesis beide aspecten onderzoekt; het eerste wordt gedaan door een generiek
optimalisatie framework te ontwikkelen dat kan werken met elk spel, sim-
pelweg door in- en outputs te voorzien van de specifieke omgeving die men
wil optimaliseren. Het tweede wordt bereikt door het bouwen van een kleine
proof-of-concept videogame in de commercieel toepasbare Godot Engine, die
vervolgens kan worden geoptimaliseerd door het framework. Door middel van
een reeks van iteratieve experimenten wordt aangetoond hoe de symbiose van
spelontwikkeling en geautomatiseerde optimalisatie kan leiden tot inzichten,
terwijl de nood aan handmatig testen laag blijft. Dit kan de drempel voor
onafhankelijke gameontwikkelingsstudio’s verlagen door de behoefte aan dure
externe speltests te verminderen.

x

CHAPTER 1

Introduction

The domain of (embedded) systems engineering has the notion of Design Space
Exploration [2], which provides an automated approach to aid designers in pro-
totyping and optimisation of complex systems. In the field of artificial intelli-
gence State Space Exploration exists; it has similar goals of limiting the search
for an optimal solution to only relevant subsections of all possible states that
can be explored [3]. This thesis proposes another method, Behaviour Space
Exploration, which allows developers to analyse certain behavioural aspects of
a system without having to manually test all possible cases. By providing a
set of inputs as well as an output scoring function to the system, the proposed
framework allows for automated exploration of the input space. Behaviour
Space Exploration is not a new term, but it is relatively unexplored within
the context of video games. Hackenberg and Bytschkow apply the concept
as a model analysis tool, limiting model checking to heuristic and/or random
results [4]. Gomes et al. discuss the approach in their paper on evolutionary
robotics and how it can act as a metric for novelty search variants [5].

In this thesis, the framework is showcased by providing a Proof-of-Concept
system in the form of a Video Game wherein an optimisation is to be found
to solve issues and provide parameters for new features iteratively. The be-
haviours of the relevant parts of the system are defined in terms of statecharts
[6], which help to abstract away the implementation details of the specific game
engine environment that is used.

1.1. MOTIVATION 2

1.1 Motivation

External game testing costs money. On average between 1 and 5 percent
of the total budget is spent on testing various aspects of a game during its
development cycle [7]. Still, this cost is a barrier to entry for most smaller-
scale productions. Since the market share of these ‘indie’ games keeps steadily
growing (up to 31% of all Steam revenue in 2023 [8]), alternative methods to
paid user testing become interesting. The back-and-forth between testers and
developers on issues that might not be exclusive to the human experience re-
duces the necessity of human-interactive testing methods. Often these aspects
are fixed by tweaking certain values or re-implementing specific parts of the
game system behaviours. Hence, the idea of letting developers define these
parameterised behaviours, which can be tested in an automated fashion, is
proposed.

Out of this specific use case, an adaptable framework is born that acts as
a general-purpose optimiser for any input-output system. To show its validity
within the realm of commercial video games, a small proof-of-concept game is
built alongside the framework, using a commercially viable game engine.

1.2 Contributions

In this thesis, the following main contributions are presented:

• Optimization Framework
A generic and reusable input-output system that provides an interface
for optimization is presented. It requires some object parameters to
optimize, along with some output-processing function. For this thesis, a
concrete implementation is provided; a video game optimizer built for a
specific game, showcasing what kinds of in- and outputs the framework
can handle.

• Proof-of-Concept Experiments
Using the Optimization Framework and an example game implementa-
tion using a commercial game engine, several experiments can be per-
formed. These provide a proof-of-concept workflow for game develop-
ment which intertwines feature implementation with automated opti-
mization. The focal point of the features to optimize is the realm of
tactical communication and how this can impact character behaviour.

1.3. TECHNICAL REMARKS 3

1.3 Technical Remarks

The proof-of-concept video game was implemented using Godot 4.2, using the
GDScript1 programming language. Inspiration for the base implementation
of a top-down shooter in Godot was taken from the tutorial series by jmbiv2.
The following image assets were used, both provided under Creative Commons
CC0 by Kenney.

• Top-down Tanks Redux
https://kenney.nl/assets/top-down-tanks-redux

• Top-down Shooter
https://kenney.nl/assets/top-down-shooter

The optimiser framework was implemented using Python 3.10 with the
following libraries:

• NLopt
A free and open-source library for nonlinear optimization [9].

• NumPy
A library for mathematical operations on arrays and matrices [10].

• Matplotlib
A plotting library for creating static and dynamic data visualizations
[11].

Performance experiments were run on a desktop PC with the Windows 11
operating system, using an AMD Ryzen 7 2700X CPU, an NVIDIA RTX 2070
Super graphics card and 32 gigabytes of DDR4 RAM.

The code for both the framework and the implemented game is provided
at the following GitHub repositories:

• Framework
www.github.com/JoshuaMoelans/thesis_framework

• Game
www.github.com/JoshuaMoelans/Master-Thesis-Godot-exploration

1https://docs.godotengine.org/en/stable/tutorials/scripting/gdscript/

index.html
2https://www.youtube.com/@jmbiv_dev/

https://kenney.nl/assets/top-down-tanks-redux
https://kenney.nl/assets/top-down-shooter
www.github.com/JoshuaMoelans/thesis_framework
www.github.com/JoshuaMoelans/Master-Thesis-Godot-exploration
https://docs.godotengine.org/en/stable/tutorials/scripting/gdscript/index.html
https://docs.godotengine.org/en/stable/tutorials/scripting/gdscript/index.html
https://www.youtube.com/@jmbiv_dev/

1.4. OUTLINE 4

1.4 Outline

The remainder of the thesis is structured as follows: Chapter 2 provides some
related work that helped to inspire this thesis. Next, Chapter 3 outlines the
process of building the actual game that is to be used during the framework
experimentation phase. Chapter 4 describes the framework, both in the generic
case as well as the specifics for the video game use case. Chapter 5 combines
the previous two, showcasing how the iterative process of adding a feature to
the game followed by automated parameter optimization is done. The final
Chapter 6 summarizes the thesis and its main contributions, as well as noting
some potential future work related to both the optimization and game aspects
of the research.

CHAPTER 2

Related Work

The field of theoretical game studies is widely researched, yet the specific con-
tributions made in this thesis are rarely found. A lot of analysis is done within
the domain of game-solving artificial intelligence (think of AlphaGo [12] and
its lineage of successors; AlphaGo Zero [13], AlphaZero [14] and MuZero [15])
as well as highly theoretical research that stays within the academic space.
Some works that analyze actual game development processes exist, yet these
often investigate and rank existing methods instead of presenting new ideas.

The works listed below all pertain to some aspects of this thesis. Some
research is more related to potential future work, hence these entries are dis-
cussed in their relevant subsections of Chapter 6 Section 6.2.

2.1 Parameter Tuning With XVGDL+

In “Automated video game parameter tuning with XVGDL+” [16], Quiñones
and Fernández-Leiva explore parameter optimization as a mechanism for solv-
ing artificial intelligence (AI) research problems. This is implemented into
XVGDL+, an XML-inspired language for specifying video games and their
desirable properties. Optimization is done through a multi-start local search
algorithm using hill climbing.

2.2. STRATEGIC DIVERSITY 6

The setup of their research is similar to that of this thesis. However, a big
difference exists in the motivation behind the automated optimization; this
thesis presents it as a tool for actual game development using a commercially
viable game engine, whereas the XVGDL+ language and accompanying XGE+
engine are purely meant for research purposes.

2.2 Strategic Diversity

In the paper “Automatic Game Tuning for Strategic Diversity” [17] by Gaina
et al. a case study is performed studying the usefulness of active learning to
reduce the need for playtesting when choosing an optimal set of game param-
eter values. Again, instead of using a commercial game engine, the specific
game they implement is done so using the General Video Game AI (GVGAI)
framework (which has not seen any updates since 2021). The optimization
aspect is performed by a genetic algorithm, where each gene in an individual
represents a single game parameter. For these, mutation leads to changes in
these values between generations, which can be evaluated and lead to selection
in the individuals.

They do not have generic optimization in mind but aim their sights at
finding good strategic depth (defined as ”the ability of a level to be played by
multiple AI agents biased towards different strategies, and for multiple such
agents to be equivalently effective”). How impactful this metric is for a human
player’s experience was measured, but yielded no significant results. In their
conclusion, the limited nature of the GVGAI framework is mentioned, as well
as the lack of generalizability of the strategic depth measurement. This leaves
room for this thesis to evaluate similar game tuning methods in an actual
fully-fledged game engine, as well as opening up the metric to optimize for to
become any scoring function instead of only one measurement.

2.3 RPSPA

A less video-game-focused prior research exists, done by Kocsis et al. In their
paper “RPSPA Enhanced Parameter Optimization in games” [18], parameter
optimization for poker and LOA (a chess/checkers-like board game) is per-
formed. However, instead of optimizing the parameters of the games them-
selves, the parameters of so-called game programs are enhanced. These pro-

2.4. REVEAL-MORE 7

grams are used to play the games and have parameters for their evaluation
and search functions.

Even though the goal is slightly different than in other related works, the
method is similar; a modified stochastic hill-climbing algorithm is used to find
optimal parameter values. This research is slightly further removed from this
thesis’ contents, yet it shows how even outside the realm of video games a
generic optimizer could be used.

2.4 Reveal-More

Chang et al. focus their research on human interaction and exploring areas
within games. In “Reveal-More: Amplifying Human Effort in Quality Assur-
ance Testing Using Automated Exploration” [19], they propose the Reveal-
More technique; it uses game state saving and loading to use as seeds for
automated exploration. The goal is to maximize coverage by doing this, re-
ducing the necessity for costly human quality assurance (QA) testing.

This is not directly tied to the goals of this thesis, yet some interesting
ideas are shown; they provide a generic tool that is game-agnostic (one only
needs to provide adequate hooks for game input as well as a save-load feature)
and is built to amplify the efforts of QA testing rather than wholly replace
humans in the loop.

2.5 Statechart-Based AI in Practice

The research paper [20] by Dragert et al. shows a designer-friendly approach
to modelling video game non-player character AI by using the statechart for-
malism. It also demonstrates how their approach is suitable for developing
commercial game AI by implementing the behaviour of units from the Halo
series of video games.

This approach to modelling behaviour in a game-engine-agnostic setting
is also followed in this thesis, and can be seen in Section 3.2.4 of Chapter
3. In contrast to the paper, the implementation of the AI itself is done in
a commercial game engine instead of Mammoth, a research framework for
massively multiplayer online games (MMOs), which Dragert et al. used.

CHAPTER 3

Building the Game

To lay out a foundation for this thesis, the Proof-of-Concept game was de-
veloped first. This Chapter outlines the process, starting with the choice of
both game and engine in Section 3.1. Next, a description of the game’s sys-
tems is given in Section 3.2, wherein both the general design overview as seen
in Section 3.2.1 as well as the unit artificial intelligence (AI) in Section 3.2.4
are provided. Lastly, it is shown how the system is prepared to slot into the
framework for automated optimisation in Section 3.3.

3.1 Choice of Game and Engine

The base concept of the game itself comes from the existing problems in co-
ordination with in-game non-player companions/characters (NPCs). This has
been described by Warpefelt and Str̊åat [21] as a combination of the Lack of
Awareness and NPCs having bad Models of Others. The former expresses how
characters are either unaware or over-aware of events (for example, not reacting
realistically to gunshots or being able to track enemies through walls), whilst
the latter describes how NPCs know what other entities are doing and where
they are (for example, having spotted an enemy moments before, but once the
line of sight is broken immediately forgetting their last position). This often
breaks immersion because of the difficulties in effective communication with
these companions, leading to interference when there should be cooperation.
In an ideal world, these non-player characters should be smart enough to not
hinder a player’s (or each other’s) progress, for example by perfectly following

3.1. CHOICE OF GAME AND ENGINE 9

voice-based commands (much like one would use when communicating with
’real’ teammates).

This leads to two distinct aspects that can possibly be optimised; (1) the
reactive commandeering behaviour (r.c.), and (2) the autonomous behaviour
(a.b.). Since there exists a wide range of game genres, analysing them on these
two criteria gives a nice overview of those genres which could be of interest.
A selection of the most prominent genres was taken from Wikipedia’s List
of video game genres [22]. Most of them have self-explanatory names, with
the abbreviation for Massively Multiplayer Online (MMO) being an exception.
The result of this analysis can be found in Table 3.1. Each category is ranked
on the overall presence of both aspects and has some listed example games
from that genre. These games, though occasionally multi-genre, have been
listed as exemplars within their primary genre’s row.

genre example games r.c. a.b.

shooter
Rainbow Six Siege [23], SWAT 4
[24], Ready or Not [25]

⊗ ⊗

strategy
Starcraft [26], Civilization [27],
Into the Breach [28]

⊕ ⊗

simulation
Cities Skylines [29], Flight Simu-
lator [30], Stardew Valley [31]

⊗ ⊕

management
Rimworld [32], Frostpunk [33],
Total War [34]

⊕ �

fighting
Street Fighter [35], Rivals of
Aether [36], Tekken [37]

© ⊗

MMO
World of Warcraft [38], Black
Desert Online [39], Temtem [40]

© ⊗

role-playing
Final Fantasy XV [41], The
Witcher [42], Undertale [43]

© ⊗

survival
The Forest [44], ARK: Survival
Evolved [45], Valheim [46]

© ⊗

puzzle
Portal [47], LIMBO [48], The Ta-
los Principle [49]

© 	

platformer
Super Mario Odyssey [50], Crash
Bandicoot [51], Celeste [52]

© 	

Table 3.1: An overview of popular video game genres with example games,
and their scores on reactive commandeering and/or autonomous behaviour/AI.
Amount is measured from small to large : © < 	 < � < ⊕ < ⊗ .

From the Table is clear which of the genres could be used to evaluate these
criteria: simulation games such as Cities Skylines [29], strategy games such as

3.1. CHOICE OF GAME AND ENGINE 10

Starcraft [26] or shooter games such as Rainbow Six Siege [23]. Other cate-
gories often lack depth in the reactive commandeering aspect, and sometimes
even the autonomous behaviour is quite simple (think of enemy behaviour in
any Super Mario game). Simulation games often have intricate systems that
react to player input, but these are presented in very complex scenarios with
extensive scale (which is out of the scope for this thesis). In strategy games
the autonomous behaviour is often quite in-depth, consisting of many layers
of interactive elements. Hence, the shooter category is chosen because of the
more linear nature of its combat mechanics, the adequate complexity of both
the commandeering and behavioural aspects, as well as the real-life application
of team tactics in actual military environments [53].

From this general genre, inspiration was gathered from the tactical combat
shooter subgenre of games (the ’shooter’ Table entries fall within this sub-
genre). All of these games offer an experience where the player can engage
in hostile situations alongside non-player companions. However, most of the
negative feedback on these games references the lacklustre nature of the ex-
isting companion AI systems. A collection of some reviews can be found in
Appendix B.1.

Instead of overcomplicating the actual game for the thesis, a simplified ver-
sion of a tactical combat shooter is implemented. The game environment is
built as a two-dimensional top-down world, wherein the visuals are kept basic
but functional. The choice to go two-dimensional was made because adding
a third dimension would only introduce unnecessary complexity and compu-
tational overhead without being relevant to the specific solutions this thesis
proposes. A screenshot of the game can be seen in Figure 3.1.

The core design of the game consists of two teams of combat units, labelled
as the ’allies’ and the ’enemies’, who exist on a grid-like map and can interact
with one another through combat encounters. A player character can be in-
troduced to allow for user input for the reactive commandeering aspect.

Instead of also overcomplicating the thesis by building a game entirely from
scratch, a game engine was chosen to provide a framework to build the game in.
Given the requirements of the core design, the engine of choice is Godot 4.2 [54].
Other popular engines were disregarded for several reasons: Unreal Engine [55]
is mostly used for realistic-looking 3D game environments, and lacks the tools
to easily develop 2D games. Unity [56] is another engine that was a potential
candidate, but also has less native 2D support. Construct 3 [57] is a 2D-focused
engine which provides visual rule-based programming tools, but is difficult to
integrate with. RPG Maker [58] is used exclusively to develop top-down RPG

3.1. CHOICE OF GAME AND ENGINE 11

Figure 3.1: Screenshot of the game.

games, which makes it too restrictive of an engine to be used for the shooter
game proof-of-concept. A strong second contender is GameMaker [59], as it
provides similar functionality to Godot. However, Godot was still preferred
since it combines a dedicated 2D engine with a simple yet complete toolset to
create games, and has been rising in popularity [1] as can be seen in Figure
3.2. It was also chosen because of the open-source nature of the Godot Engine
[60], which is helpful when debugging project-specific issues.

Figure 3.2: Game engine popularity in the Global Game Jam. Adapted from
[1].

3.1. CHOICE OF GAME AND ENGINE 12

3.1.1 Introduction to Godot

Since explaining the game’s development process contains some Godot-specific
terminology, this Section is dedicated to a brief introduction to game devel-
opment using the engine. The information below has been gathered from the
official Godot documentation [61] and contains the most relevant items neces-
sary to build the proof-of-concept game.

Node
The generic building block that is used to make games. Combining these

can be done in a scene. There are a lot of node types, such as Cameras,
Audiolisteners, Rigidbody, Raycast, ... each with its specific purpose, methods
and properties.

Scenes
A scene is a tree-like collection of these nodes. It can be saved to the disk

and re-used, and can represent anything from a character to a weapon, an
entire level or a simple user interface (UI) element.

Scene Tree
Much like nodes can make up a scene, these scenes can be combined into

what is called a scene tree. A game consists of one main scene tree that can
contain both scenes as well as nodes.

Script
Like in other game engines, Godot provides a way to program behaviours

for the nodes in our scenes. This can be done through the use of GDScript
(an imperative object-oriented programming language that looks similar to
Python) or C#. These are attached to nodes and can be created from user-
provided or built-in templates.

Signals
Nodes can emit signals whenever an event occurs. These can be used to

communicate between nodes, for example by lowering a UI ammo counter
when a player shoots their gun. They are implemented following the Observer
pattern. One can define their own signals, which should follow the ’call down
signal up’ idea; in the scene tree, method calls should happen top-to-bottom,
whilst signals should be sent bottom-to-top. This strengthens loose coupling
and allows independent functioning of emitter and observer [62].

3.2. BUILDING THE GAME’S SYSTEMS 13

TileMap
A node type that is used to draw 2D tile-based maps. They use a TileSet

(a tile library that can hold pixel rendering data and custom property layers
such as a physics layer for collisions) to allow drawing of a game’s layout.

NavigationServer2D
This provides an interface for low-level 2D navigation. It can handle navi-

gation maps (which can be built from TileMaps), regions and agents. Under
the hood, it uses the 3D navigation server (with the y coordinate set to 0.0)
which can use navigation maps to calculate paths with an implementation of
the A* algorithm1.

3.2 Building the Game’s Systems

From the general concept of the game and the choice of game engine, the actual
building of the core systems can start. An overview of the design is shown in
Section 3.2.1. Next, a short explanation of the recurring ’manager’ structure
is clarified in Section 3.2.2, followed by a description of the game’s visuals in
Section 3.2.3. The dynamics of the game are laid out in Section 3.2.4, followed
by a brief Section on pathfinding in 3.2.5, with a finishing Section 3.2.6 on the
player controls.

3.2.1 Design Overview

Figure 3.3 represents a high-level overview of the different systems in the game.
One instance consists of six core elements. Most of them are ’Nodes’ in Godot,
except the navigation map which is a ’TileMap’.

• NavMap - The navigation map used to draw the tiles of the game.

• BulletManager - The node which handles the creation of bullets through
an attached script. All spawned bullets from any weapon will become
child elements of this, allowing us to track them regardless of who fired
them.

• AllyManager - The manager responsible for keeping track of all allied
units. Each of these units has a weapon and a few scripts that implement
their behaviour. The manager itself has code that initialises each unit
and keeps track of the number of ally deaths.

1https://en.wikipedia.org/wiki/A*_search_algorithm

https://en.wikipedia.org/wiki/A*_search_algorithm

3.2. BUILDING THE GAME’S SYSTEMS 14

• EnemyManager - A node which is very similar to the one above, but
handling the enemy team instead. Functionality-wise, this does the exact
same.

• AdvancePoints - This node contains a list of sequential checkpoints
which the allied units use to move through the map.

• Pathfinding - This last node is necessary for Godot’s built-in pathfind-
ing tools. It uses the navigation map to allow the existing Navigation-
Server2D interface to generate paths between a given start and end point.

Figure 3.3: A general overview of the game design.

The dynamics of this system is described by how allies and enemies interact.
The details are found in Section 3.2.4, in essence, each unit follows a behaviour
chart influenced by outside events, where their goal is to move between certain
positions and shoot at any encountered units from the opposing team.

3.2.2 Manager Structure

A repeating concept that is used in this design is that of the XXXManager.
This is due to the ’call down, signal up’ philosophy that dictates the way data
and events should flow between scripts, as described in Section 3.1.1. In turn,
this leads to lower coupling [63] and the delegation of responsibilities onto the
entities that actually need the data without having to rely on in-between nodes
in the scene tree.

3.2.3 Visuals

As described in the introductory Section about the approach to building the
game, the visual representations of the game world are basic yet effective. A

3.2. BUILDING THE GAME’S SYSTEMS 15

screenshot is shown in Figure 3.4 using the assets provided by Kenney.nl (see
1.3). It showcases the map with both ally and enemy units, some obstacles
and a few advance checkpoints. The allied units can be seen approaching from
the left side, following the circular orange advance checkpoints into the enemy
enclosure. The pink lines represent the current paths they are taking towards
their next checkpoint. The enemies, having a more robot-like appearance, are
seen patrolling the inside of the confined square on the right.

Figure 3.4: Screenshot of the game.

3.2.4 Unit AI

As described above, the game dynamics are executed by two opposing teams:
the allies and the enemies. Except for the naming difference, these two be-
have very similarly. Hence, this behaviour can be described entirely with one
statechart, as shown in Figure 3.5. It uses the formalism introduced by Harel
[6] (and proven to be viable in a video game context by Dragert et al. [20]).
The illustration has states (yellow rounded rectangles), composite states (white
rectangles, used for the actual behaviours they represent) and transitions be-
tween them (arrows pointing from one state to the next). These transitions
are labelled with the event that triggers them (empty if automatically taken)
followed by a ‘/’ and an action to perform. A diamond indicates a choice,
and the circle with ‘H*’ indicates a deep history state, which means that a
transition pointing to that circle will go back to the last state that was visited
before going into the compound state it is attached to.

3.2. BUILDING THE GAME’S SYSTEMS 16

Figure 3.5: Statechart of unit AI.

The initial state for all units is the PATROL state. Therein a loop is
executed where a patrol path is computed and the next target position is set.
Once this next position is reached, a check is performed whether the end of
the generated path is reached. If this is the case, a timer starts counting down
(to simulate the unit scanning whether that position is safe) after which a new
path is generated. If the path is not finished, the next position on that path
is set as the new target position for that unit.

A similar yet slightly different state is the ADVANCE case. There a path
is received from an outside control center, which is followed in much the same
way that the PATROL path is to be followed. Once the path is completed,
the state reverts to the base PATROL state again. If the given advance points
list is non-empty upon game initialisation, the allied units will go to this state
immediately.

Another possible external event that occurs is the target detected one. Once
this fires, a unit immediately goes into the ENGAGE state. There, as long
as the target is not lost, the unit checks whether the enemy is in sight or not.

3.2. BUILDING THE GAME’S SYSTEMS 17

If it is, the unit shoots. If it is not, after some implicit delay, the check is
repeated. Once the target is indeed lost (either by movement or by death) the
engaging unit’s state is restored back to the previous one.

The implementation details of the actual behaviours are left out to allow
for the reusability of the same diagram for other programming languages (see
Section 6.2.2). Other details, such as weapon firing and reloading, movement
mechanics or the receiving of events are left out for readability purposes. These
can be found in the public repository referenced in Section 1.3.

3.2.5 Pathfinding

An important part of functionality in any game involving non-player character
movement is that of pathfinding. In this game, this is done following a grid-
based approach, making use of the NavMap to draw which tiles are walkable
areas and which ones are not. This data is then used by the built-in pathfinding
interface to generate paths between any given start and end point.

During testing, it was noticed how these paths can sometimes clash, leading
to units bumping into one another or even getting stuck. This is a tricky
problem to solve, and has puzzled many game developers that came before
[64]. As multi-agent path planning is a PSPACE-hard problem [65], in the
interest of the thesis, it was decided not to spend too much time on fixing
these issues. In general, a trade-off between computation and accuracy is
always required. For the purposes of the game, computational performance
was favoured. Hence, the paths between any start and end point are only
calculated once, and not updated at every game tick. This can lead to slight
inaccuracies and collisions but allows us to run the game smoothly. Some other
approaches to solve this problem have been presented before. The one by David
Silver in 2005 is discussed in Section 6.2.3 of the Future Work Chapter.

3.2.6 Player Controls

Alongside the autonomous unit behaviour, player controls are an important
part of games. These are less interesting when running automated optimisa-
tions on the system, but can act as a sanity check for the actual playability
of the game prototype. The player can do similar actions as the units, al-
beit less constrained by the grid-based level layout. Movement is possible in
8 directions (both cardinal directions as well as the diagonals between them)
and shooting happens towards the cursor’s on-screen position. Reloading can
be done manually or happens by itself when trying to shoot with an empty
magazine. Another feature that only the player has is that of commandeering
units; by right-clicking it sends a notification to all allied units to make their
way towards the cursor position. For the units, this equates to receiving the
advance path received event in their behaviour statechart.

3.3. SIMULATION PREPARATION 18

3.3 Simulation Preparation

Before being able to run the simulation phase of the optimisation loop on
the created game, some additional preparatory steps are required. The human
interaction aspect is removed for now, since large-scale simulation that requires
user input to function would defeat the purpose of the automated optimiser
framework. For validating the optimal outcome generated by the optimiser,
the ’player’ character will be re-placed (i.e. added back) inside of the game
environment for playability testing. For simulation, it is simply replaced by a
camera controller that can view the entire game scene, move around and zoom
in and out.

As mentioned before, the framework requires both inputs to the system
as well as output values that show how good an iteration was. The latter is
done through collecting data via the game’s state, which is discussed in Section
3.3.1, whilst the former becomes a part of the unit AI systems. The act of
saving and loading this state is briefly introduced in Section 3.3.2. To be able
to run the framework as efficiently as possible, learning the most in the least
amount of time, instancing as well as headless running are used. These are
detailed further in Sections 3.3.3 and 3.3.4. To compare the performance of
these alterations to the game, some experiments were performed. The results
thereof are shown in Section 3.3.5.

3.3.1 Game State

To be able to gather data from one single game execution a structured approach
is required. Hence the concept of State is introduced, which is implemented
through the storing of relevant data in a JSON-like structure. The data is
gathered through the use of the aforementioned managers (see Section 3.2.2)
that can signal the necessary data upwards. The state holds the following
details for both allied and enemy units:

• aim direction - Used to know where a unit is shooting towards.

• ammo - Representing the number of bullets left in the unit’s weapon.

• goal position - The target position the unit is currently trying to get to.

• health - A value showing the health of the unit. If this is zero, the unit
is presumed dead.

• id - A unique identifier of that unit.

• initial locations - The set of advance goals the unit follows.

3.3. SIMULATION PREPARATION 19

• path - The current path from the unit’s position towards the goal posi-
tion.

• position - The current unit position.

• previous state - Used to implement the Deep History from the statechart
when a unit exits the engage state.

• reload count - The number of reloads done by the unit.

• state - The unit’s current state in the behaviour statechart.

• target - A reference to the current target’s identifier.

Furthermore, all currently active bullets in the scene are tracked. For each
of them, the direction of travel, position, speed and the team that the bullet
originated from are stored. The amount of damage done by each team is also
saved, as well as the friendly fire damage (labelled as team damage). Lastly, a
timer value is used as the unique identifier of the state update.

An example output can be found in the Appendix Section A.1.

3.3.2 Saving and Loading

Since the game updates these State values continuously, always storing it to
a file is very resource-intensive. Luckily, constantly outputting this state is
not required for large-scale simulation. However, it is interesting to re-run a
specific portion of a stored game state with differing parameters to compare the
results visually. A save-and-load system was implemented to allow just this,
by providing an on-demand way to store the current game state or restore the
game state from one of the previously saved state files.

3.3.3 Instancing

Since our game setup is quite simplistic in nature, speeding up the learning
process of our optimisation framework can be done through so-called instanc-
ing. This means that one game instance is ’duplicated’ in some way to allow
for multiple runs of the same (or different) input parameters to parallelise the
gathering of results. Since the previous Section showed how the game state
can be stored (and restored) multiplication of game instances can easily be
tracked by saving and loading each instance’s state.

The following Sections outline two different approaches of instancing as
well as a performance comparison to see what kinds of speed-up is achieved.

3.3. SIMULATION PREPARATION 20

3.3.4 In-Game vs. Across-Game

The first type of instancing will be called ’In-Game instancing’. Here a square
grid is generated of at most n× n game scenes. This grid does not necessarily
need to be full; for example, a grid of 7 instances does not fit in a 2× 2 square
grid and does not fill up a 3 × 3 grid. Hence it will start ’filling up’ the 3 × 3
grid until the last row and will keep the last two spots open. A full grid is
shown in Figure 3.6 and a non-full grid is shown in Figure 3.7.

Figure 3.6: In-game instancing showing a full grid of 5 × 5 = 25 game scenes.

Figure 3.7: In-game instancing showing a non-full grid of 7 game scenes.

3.3. SIMULATION PREPARATION 21

The second type of instancing is to be called ’Across-Game instancing’.
This is an even simpler form of multiplying the number of game scenes, which
is achieved by running multiple compiled versions of the entire game (which
can then still use In-Game instancing) next to one another. An example is
shown in Figure 3.8.

Figure 3.8: Across-game instancing showing four compiled games running side-
by-side.

3.3. SIMULATION PREPARATION 22

3.3.5 Performance Comparison

Even though the game uses simple graphics, a large chunk of computing power
is used to visualise what is happening on screen. Luckily no aspects of our
simulation have an intrinsic need for constant visualisations, hence an exper-
iment was conducted to compare the average frames per second (FPS) when
rendering the full grid, rendering a small subsection, or fully disabling ren-
dering. This average was calculated by using the Godot Engine’s built-in
get frames per second method. The results are shown in Table 3.2, with a
corresponding visual representation in Figure 3.9.

instances
average FPS
(zoomed out)

average FPS
(zoomed in)

average FPS
(disable rendering)

1 1400 1900 2900
2 1000 1500 2800
4 600 1300 2700
8 300 1400 2500
16 140 1000 2200
25 90 500 1900
32 35 200 1400
49 10 50* 800*

Table 3.2: In-game multi-instance performance comparison. Higher average
Frames Per Second (FPS) is better. Entries with a * have higher variance in
FPS, with frame hops and frame drops (going far above/below the average).

Figure 3.9: In-game multi-instance performance comparison plot. Higher av-
erage Frames Per Second (FPS) is better.

3.3. SIMULATION PREPARATION 23

As expected, a lot less computing power is used when reducing the amount
of rendered objects. Entirely disabling rendering has the biggest performance
boost, with a noticeably smaller drop-off in average frames than just zooming
into the scene. In terms of the median FPS, an optimum seems to be found
around 25 instances, since a larger grid suffers from frame drops as well as
frame hops even with rendering disabled (e.g., in the 49 instance case the FPS
goes anywhere from 10 to 1500). For simulation purposes, a grid of at most
5x5 in-game instances will be used.

On top of this parallelisation technique, multiple game windows can be
created to run these grid-instanced games next to one another. There is no
major performance hit when running these across-game instances; a drop-off
of about 50% occurs when using the built-in Debug mode to run 4 games side-
by-side. Since 4 times as many games are run, yet the drop in FPS does not
make each game unusable, this is another viable option to increase simulation
batch size. A comparison of the FPS going from one singular game to running
two or four at the same time is shown in Table 3.3. It is noteworthy that for
in-game instance counts from one to eight the average FPS stays consistently
at 1200, with the first minor drop appearing when increasing the in-game
instance count to 16. Increasing the count to 25 drops the average down even
lower, which shows that for this style of instancing an optimum sits around
the 16 instance mark.

instances
average FPS

(1 game)
average FPS

(2 games)
average FPS

(4 games)
1 2900 2000 1200
2 2800 1900 1200
4 2700 1800 1200
8 2500 1700 1200
16 2200 1600 1000
25 1900 1300 700

Table 3.3: Across-game multi-instance performance comparison. Higher aver-
age Frames Per Second (FPS) is better.

3.3. SIMULATION PREPARATION 24

Figure 3.10: Across-game multi-instance performance comparison plot. Higher
average Frames Per Second (FPS) is better.

CHAPTER 4

Building the Framework

This Chapter starts by giving an overview of the Framework approach for
optimizing the game in Section 4.1. Next, the details for building a Generic
Optimization Framework are given in Section 4.2. It is then shown how this
framework can be used for the specific Game Improvement Proof-of-Concept
in Section 4.3.

4.1 Framework Approach

During the entire development of any game, there exist two major time- and
resource-consuming stages [66]. The incubation stage where a lot of creative
work is done, ideas are gathered and a game vision is created, followed by the
second main stage being the actual game’s production. During this second
phase a lot of time is spent tweaking gameplay parameters and implementing
features that were designed during the incubation phase. This part of the
development process often suffers from clichés such as the 90-90 rule (“...
90 percent of the game accounts for the first 90 percent of the development
time. The remaining 10 percent of the game accounts for the other 90 percent
of the development time.” [67]) or the concept of ‘development hell’ (where
development is stalled due to a number of reasons, from overambitious scope
to poor development time management [68]).

The goal of the Framework Approach is to provide a tool to aid during
this treacherous development phase, assisting developers by automating the
parameter-tweaking and testing aspect of the production cycle. The developed

4.2. GENERIC FRAMEWORK 26

framework is designed to be a broadly applicable architecture for automated
optimization. This is achieved by first having it take in a set of parameters
to optimize. Then, it is also attached to some outside code/environment used
to gather a resulting score for an optimization iteration. Since in a video
game context such parameters already exist, adapting the game to slot into
the automated optimizer framework is a relatively straightforward task (i.e.
by providing an interface to the game that sets parameter values when the
game is loaded). Since the optimization is also based on scoring metrics, these
should also be generated by the game in some way. Again, this is not an
insurmountable undertaking, since games usually have a save-and-load feature
that can be repurposed to provide values for scoring an optimization iteration.

4.2 Generic Framework

The reusability aspect comes from the design of the Generic Optimizer Frame-
work. For this thesis it was implemented with the Python language, using the
NLopt library (an open source toolbox for nonlinear optimization [9]). On top
of the base optimization loop, a generic parameter class was designed. This
provides a reusable interface for getting and setting values of the parameters
that are being optimized, independent of the problem that they are being used
to solve.

4.2.1 Generic Parameters

To have some values to optimize, the Generic Parameters class was designed
as a reusable abstract interface for any number of parameters. As can be seen
in Figure 4.1, a complementary class for any individual Generic Parameter
has been introduced. Each parameter that instantiates that class is given a
parameter-type, a minimum and maximum value as well as the initial value and
a step size. The collective Generic Parameters class can then be implemented
for any given problem by inheriting from the class and providing a list of named
parameter variables of the Generic Parameter type. The abstract base class
still takes care of setting and getting attributes, as well as getting the Generic
Parameter member variables’ values.

4.2.2 Generic Optimizer

The generic optimizer class follows the basic setup that any Python-based
NLopt class should adopt. As can be seen in the class diagram on Figure 4.2,
the optimizer has only three methods and three member variables. These vari-
ables are the primary optimization algorithm that NLopt should use (opt algo),

4.2. GENERIC FRAMEWORK 27

Figure 4.1: Class diagram of Generic Parameters and Generic Parameter
classes.

a possible secondary algorithm (opt algo 2) that is required for some primary
optimization algorithms, and a dictionary (NLopt return codes) that maps
NLopt return codes to more verbose messages (which can tell the user why
an optimization loop has finished, for example through reaching a goal value,
maximal number of iterations, running out of time, ...).

The methods consist of a constructor, which sets up the optimizer using
the two given algorithms, followed by the objective function used in the op-
timization loop and the optimize function itself. This last method takes in
three distinct stopping criteria, being the relative tolerance on parameters
(xtol rel), the relative tolerance on the objective function output (ftol rel)
and the maximum number of evaluations to perform (maxeval). These relative
tolerances are used to provide an early end to the optimization loop, the first
doing so when the difference in parameter values from one iteration to the next
becomes too small, whilst the second does the same for the objective function.
The method also uses the given parameters to set all of their lower bounds,
upper bounds, step sizes and initial values. After the setup phase is done,
the NLopt library does its work and performs the optimization with all of the
given values. After it is finished, the output shows how long the optimization
took, how many iterations were performed, and for each of the parameters
what their optimal value is.

Figure 4.2: Class diagram of the Generic Optimizer.

4.3. GAME IMPROVEMENT PROOF-OF-CONCEPT 28

4.3 Game Improvement Proof-of-Concept

For the base of the game that was finished in the previous Chapter, a derived
Optimizer class can be set up, inheriting from the Generic Optimizer class
from the previous Section. This is done to simulate the process of automated
optimization for in-game parameters as described in 4.1, which requires both
simulation parameters and a way to handle simulation output. In this Section,
both aspects are explained in terms of the specific top-down shooter game,
by first showing an example of some optimization parameters in Section 4.3.1,
followed by a description of the implementation of simulation output in Section
4.3.2. Lastly, the optimization loop including the running of the game with
the given iteration’s parameters is described in Section 4.3.3. The optimization
algorithms and the choice thereof are shortly detailed in Section 4.3.4.

4.3.1 Simulation Parameters

As described in Section 4.2.1 any optimization needs a set of parameters. As
a starting point for the game optimization, the GameParameters class was
created. This class is used to represent values of in-game parameters that can
be tweaked for gameplay purposes (e.g., movement speed, reaction time, bullet
damage, ...). An example definition can be seen in Figure 4.3, containing two
parameters that will be used in the first optimization experiment (see Section
5.1).

from Parameters import GenericParameters, GenericParameter

class GameParameters(GenericParameters):

def __init__(self):

self.communication_count = GenericParameter(type_="int", min_=0, max_=5,

value=2, step_size=1)

self.communication_delay = GenericParameter(type_="float", min_=0.0, max_=1.5,

value=0.2, step_size=0.1)

Figure 4.3: Python code showing an example GameParameters class definition.

Any number of named variables can be added to the constructor, all being
instances of the generic parameter class. These get given a type, minimum
and maximum values, an initial value as well as a step size.

4.3.2 Simulation Output

Like described in the previous Chapter under Section 3.3.1, the game provides
the option to retrieve the current state which gets stored to a JSON file. This
state can be used in the Framework to compute an objective function, by
providing a weighted sum of all relevant attributes. It is up to the user to

4.3. GAME IMPROVEMENT PROOF-OF-CONCEPT 29

define how each game is scored. In the case of the current game setup, the
first and simplest value to optimize is the amount of team damage dealt by all
the allied units, which is represented in the abbreviated state output as can
be seen in Figure 4.4 (for a full output of the state, see Appendix A.1). This
scoring is then defined in the code as can be seen in Figure 4.5. The score
method gets called to generate an output for the objective function, which
NLopt uses to measure an optimization iteration’s performance.

{

"allies": {

...

},"bullets": {

...

},"damage_done": {

...

},"enemies": {

...

},"team_damage":{

"allies" : 120,

"enemies" : 40

},"timer": 23.567812

}

Figure 4.4: Abbreviated state used for basic game scoring.

def score_game(self, game_results:dict) -> float:

return game_results["team_damage"]["allies"]

def score(self, results:dict) -> float:

instance_scores =[]

for instance_result in results.values():

instance_score = self.score_game(instance_result)

instance_scores.append(instance_score)

return np.mean(np.array(instance_scores))

Figure 4.5: Python code for basic game scoring.

The game results are gathered by reading all of the final state files of each
in-game instance. The results of each instance then get scored by passing the
instance result to the score game method, where in this example the instance
score is calculated by simply reading out the team damage done by the allies.
This instance result is added to a list, such that in the end the mean value can
be returned as the final score of this optimization iteration.

4.3.3 Derived Framework

To run an Optimizer on the created game, some additional steps are imple-
mented on top of the Generic Optimizer. As can be seen in the class diagram
in Figure 4.6 there are some extra variables: the location of the game is used

4.3. GAME IMPROVEMENT PROOF-OF-CONCEPT 30

to run the executable, the location of the logs is used to gather the simulation
results, the number of in-game instances can be set (to speed up the learning
of the optimizer, by running multiple games with the same parameter setup
at once) as well as a timeout value (after which a game simulation should be
forced to end). As described above, the parameters to optimize are given by in-
stantiating a GameParameters object in the constructor. The last variables in
the list are all used for logging per-iteration data and generating plots thereof.

Figure 4.6: Class diagram of the Game Optimizer (inheriting from the Generic
Optimizer).

In terms of methods, the Game Optimizer’s logic is the same as the generic
one; an objective function is defined, which gets called in the superclass’ opti-
mize function. This objective function calls the run method to actually execute
the game with the new parameter values generated by NLopt. These are passed
as command line arguments (CLA) which get parsed by the compiled game.
A CLA handler exists within the game’s main script, passing the arguments
down to wherever they are to be used. An example code snippet that runs
the game is shown in Figure 4.7, wherein the number of in-game instances is
passed via ngames, the visibility of the games is set to true by the visible argu-
ment, and the communication count and delay are passed by their respective
parameters.

4.3. GAME IMPROVEMENT PROOF-OF-CONCEPT 31

subprocess.run(["game.exe","-ngames=9","-visible=true",

"-communication_count=1","-communication_delay=0.2"])

Figure 4.7: Python subprocess call to run the game with given arguments.

Each in-game instance will write a final state to a file when all units of either
the allies or the enemies are dead, or after the global timeout runs out. When
the entirety of the game has finished, the results of all instances are collected
by going through the given logs folder in alphanumerical order, and storing the
game instance X GAMEOVER or game instance X TIMEOUT file’s content
for each instance X (where the GAMEOVER file has priority over TIMEOUT
due to the alphabetical order). An example file hierarchy is shown in Figure
4.8.

logs

|--- game_instance_0_GAMEOVER.txt

|--- game_instance_0_TIMEOUT.txt

|--- game_instance_1_GAMEOVER.txt

|--- game_instance_1_TIMEOUT.txt

|--- game_instance_2_GAMEOVER.txt

|--- game_instance_2_TIMEOUT.txt

...

Figure 4.8: Game logs folder structure.

It is to be noted that in some cases both teams have no remaining units,
since the bullets that were fired just before a unit’s death do not despawn
(just like in real life). In this case, the GAMEOVER file for that instance is
overwritten by a new GAMEOVER file whenever the last member of the last
team dies. Hence, no complex system is required to await all fired bullets to
despawn before storing the final state. This data then gets used in the scoring
as described above. During each run of the optimizer, the in-between data is
stored and can be plotted or stored after the optimizer is finished by calling
the respective plot data and store data methods.

4.3.4 Optimization Algorithms

A combination of global and local search is used for all game optimizations.
For this, the NLopt implementations of MLSL [69] and COBYLA [70] are set
as the primary and secondary optimization algorithms. The former provides a
strategy of global optimization by performing a sequence of local optimizations
from random starting points, where each of these local searches are done by
the COBYLA algorithm. Global search is used because of the often large
search space that exists by having many tweakable number-based parameters,

4.3. GAME IMPROVEMENT PROOF-OF-CONCEPT 32

whilst COBYLA provides a gradient-free local optimization algorithm (since
the game environment does not come with a simple derivate to take advantage
of, as is the case in Neural Network-like situations). COBYLA shows good
performance on constrained optimization problems [71] and separates itself
from other NLopt alternatives by providing different parameter step sizes [9]
which are useful for optimizing differently scaled in-game parameters at the
same time.

CHAPTER 5

Game Optimizer Experiments

The game as described in the Chapter 3 lacks finalized dynamics to make it
feel like a truly complete experience. In this Chapter, the goal is to add more
behaviours and strategies to the game, as well as fine-tune them by using the
Optimizer Framework from the previous Chapter 4. The final result should
feel more ‘alive’ than the bare-bones implementation, which is achieved by a
short iteration loop that uses the power of the Framework to test new and
updated features.

Each Section entails a certain optimization experiment, going from a spe-
cific problem that is to be solved, followed by a hypothesis about what changes
should be made in the game to find a solution to the problem and what the
optimizer is expected to find, ending with some visualized optimization re-
sults. The experiments are performed on the same hardware used in the game
performance testing. Their specifications can be found in Section 1.3.

5.1 Basic Communication Strategy

In the game from Chapter 3, only basic behaviours following the statechart
in Section 3.2.4 exist. One of the first additions to make the game feel more
alive is a basic communication strategy. Currently, the behaviour for every
unit is to just shoot in the direction of any enemy once they spot them. In
Godot, this event happens when a target is detected, which is achieved through
collision shapes. These mimic a sort of ‘vision range’ for all units, which makes
them aware of others inside of that range. Even though realistically a cone

5.1. BASIC COMMUNICATION STRATEGY 34

would make more sense, in the base implementation a circle is chosen for
computational and implementational convenience. For both ally and enemy
units, these circles can be visualized as shown in Figure 5.1.

Figure 5.1: Collision shapes visualized in red for ally and enemy units.

5.1.1 Problem

As mentioned above, only having one-on-one combat is not quite realistic. In
a real-life scenario, other friendly units would be notified about the encounter
(either verbally, through digital communication, or by hearing gun sounds) and
start to engage themselves. Hence, as a first basic communication strategy,
a teammate-notification protocol is introduced. For this, the following two
parameters from Section 4.3.1 are implemented into the game code:

• communication count
The number of teammates to notify when a unit engages in combat.

default value minimum maximum step size
2 0 5 1

Table 5.1: communication count parameter attributes.

• communication delay
The delay between a unit starting a combat encounter and sending out
the notification to the unit’s teammates.

default value minimum maximum step size
0.2 0.0 3.0 0.5

Table 5.2: communication delay parameter attributes.

5.1. BASIC COMMUNICATION STRATEGY 35

Once a unit engages an enemy, it notifies the others through a higher-level
communication class. This class awaits the delay, after which it collects all
remaining teammates and sorts them based on the distance to the already at-
tacking unit. The first communication count of these are signalled to attack
the opposing team’s unit, bypassing the need for spotting the enemy in their
vision range.

As a first implementation of this signal behaviour, the units that get noti-
fied just start shooting in the direction they’re told, without checking whether
they will be hitting the enemy or any in-between obstacles. This is a naive
implementation, so the expected outcome of the optimizer is to showcase the
shortcomings thereof. As a scoring metric, the amount of team damage is cho-
sen (as the simple implementation will negatively impact this value). Logically,
one would expect that adding communication and teamwork would improve
unit cooperation and hence positively influence the game outcome.

5.1.2 Optimization

Setting the initial parameter value for the communication count to 2 and the
initial value for the communication delay to 0.2, the graph in Figure 5.2 is pro-
duced. The x-axis shows the iteration number, the y-axis shows the average
ally team damage per instance, and each data point has a label that shows
the input parameters (communication count, communication delay). Intu-
ition would say that a higher number of notified units is a better strategy.
However, on the graph, it seems like the optimizer settles for a low communi-
cation count of 0 (paired with a trivial communication delay, since it has no
effect if there are no units to communicate with). The average team damage
dealt is below 20 for all iterations where the count is set to 0, which means
that on average less than one bullet fired by an ally hits another allied unit
(as bullet damage is equal to 20).

The data points can also be plotted on a heatmap as can be seen in Figure
5.3. To ensure readability, each cell represents not just one but several ex-
periments, depending on how many (count, delay) values are within a bucket
range of 0.00001 of the actual cell coordinate (e.g. for a cell (1, 0.00020) all
values from (1, 0.00019) to (1, 0.00021) are collected). The experiment results
are averaged over this neighbourhood, as the optimizer sometimes explores a
narrow area around certain points.

5.1. BASIC COMMUNICATION STRATEGY 36

Figure 5.2: Notify-on-attack experiment results. Points labelled with (com-
munication count, communication delay).

Figure 5.3: Notify-on-attack heatmap. Points labelled with average score of
that (delay, count) parameter pair. A lower score is a better result.

However, it is also possible that the algorithm finds a different optimum
based on the given bounds for the parameters. For example, if the upper
and lower bounds for the communication delay get changed to [0, 5] , the
optimizer can be persuaded to look at a high communication count value.
This happens because a delay which is high enough is practically equivalent to
having a communication count of 0 (as by the time other units get signalled,
the attacking and/or attacked unit are already dead). An example of such
an optimization run can be seen in Figure 5.4, with a heatmap showing the
overly explored communication count value of 4 in Figure 5.5. This shows how
important it is to always consider the upper and lower bounds of parameters
and how they interact when evaluating an experiment.

5.1. BASIC COMMUNICATION STRATEGY 37

Figure 5.4: Notify-on-attack experiment results with alternative parameter
bounds. Points labelled with (communication count, communication delay).

Figure 5.5: Notify-on-attack with alternative parameter bounds heatmap.
Points labelled with the average score of that (delay, count) parameter pair.
A lower score is a better result.

The experiment has shown that, in the current implementation, a higher
communication count negatively impacts team damage. This can be explained
by the initial setup of the ally and enemy units, as they follow a different move-
ment pattern; the allies move from left to right in single file formation, while
the enemies patrol the area independent of one another. Since notification
happens in a circular manner around the engaging unit, if the closest units
are right behind one another they won’t have the room to aim towards the
attacked unit properly. As can be seen in Figure 5.6, this is the case for the
allies, whilst the enemies can engage in a cross-fire pattern (as they are more
spread out).

5.2. ALTERNATIVE SCORING METRIC 38

Figure 5.6: Cross-fire behaviour of enemy units.

5.2 Alternative Scoring Metric

In the previous experiment, the only element of the state that was taken into
account for scoring an optimization iteration was the team damage done by
the allies. However, this is not the only aspect worthy of optimizing. An
alternative scoring metric that not only values low team damage but also
incentivizes winning the game can be used to analyse the basic notification
protocol from the previous experiment.

5.2.1 Problem

Evaluating the game on multiple aspects can show how dynamic the current
version truly is. By implementing an alternative scoring metric that weights
values related to winning the game (which is achieved by having killed all en-
emy units) this can be achieved. A code snippet can be seen in Figure 5.7,
where the score is computed from a given game instance state (see Appendix
A.1 for an example of such a state file) by giving a high penalty of 1000 for
losing all allies, a small penalty of 10 for all remaining enemies and a large
bonus of −500 if all enemies are killed. The amount of team damage is still
used but has less impact on the overall score.

5.2. ALTERNATIVE SCORING METRIC 39

def score_game(self, game_results:dict) -> float:

score:float = 0.0

alliesAlive = 0

for unit in game_results["allies"].values():

if unit["health"] > 0:

alliesAlive += 1

if alliesAlive == 0:

score += 1000 # high penalty for losing all allies

enemiesAlive = 0

for unit in game_results["enemies"].values():

if unit["health"] > 0:

enemiesAlive += 1

if enemiesAlive != 0:

score += 10 * enemiesAlive # weighted penalty for keeping more enemies alive

else:

score -= 500 # bonus for killing all enemies

score += game_results["team_damage"]["allies"] # penalty for team-damaging allies

return score

Figure 5.7: Python code for alternative game scoring using weighted metrics.

5.2.2 Optimization

This time the naive approach of the notification protocol shows its shortcom-
ings. Intuitively it would make sense to have more friendly units helping in
combat, but the results as seen on the graph in Figure 5.8 as well as the
heatmap in Figure 5.9 indicate that the best value for the communication
count is still 0. Similar to the previous experiment, this can be explained by
the movement patterns of both allies and enemies. Since the single-file move-
ment of the allies does not benefit from the notification protocol, whilst the
cross-fire potential of the enemy patrol positioning does, a higher communica-
tion count will only be an advantage to these enemy units.

This shows that some better implementation is required to make the be-
haviour of the units feel more realistic, since the current outcome does not
match the intuition that teamwork is better than one-on-one combat engage-
ment.

5.3. IMPROVED COMMUNICATION STRATEGY 40

Figure 5.8: Notify-on-attack experiment results with weighted scoring metric.
Points labelled with (communication count, communication delay).

Figure 5.9: Notify-on-attack with weighted scoring metric heatmap. Points
labelled with an average score of that (delay, count) parameter pair. A lower
score is a better result.

5.3 Improved Communication Strategy

Since both prior experiments have shown that the basic implementation of the
communication strategy is not quite perfect, a revisit of the ‘notify’ strategy
is in order. In addition to the point-and-shoot mechanic, tactical movement
can be introduced to also reposition the notified friendly units.

5.3. IMPROVED COMMUNICATION STRATEGY 41

5.3.1 Problem

The previous experiment shows how the initial implementation of a communi-
cation strategy does not quite match expectations. Hence, the ‘notify’ strategy
should be revisited so units react smarter when they are tasked with aiding
their teammates. In the old implementation, when a unit starts attacking, the
notification protocol selects the communication count closest friendly units and
informs them about the location of the opponent that the attacking unit is tar-
geting. This has some issues since it is not certain that the closest units can
actually see this opponent. Instead of this simple point-and-shoot implemen-
tation, tactical movement can be introduced to guide units to better positions
when engaging with the enemy. Now, when a friendly unit starts attacking
someone within their vision range, the first communication count teammates
will reposition themselves in such a way that they can shoot (and hit) the
common target.

5.3.2 Optimization

As introduced above, the new communication strategy to optimize uses tac-
tical movement to reposition friendly units. This can be visualized as shown
in Figures 5.10 and 5.11, where the two grey enemy units in the bottom right
move towards the position of their under-attack friend in the middle. The
map layout has also been updated to show this tactical movement better since
adding an obstacle reduces the number of vision lines between units. The
same parameters can still be optimized for this experiment, being the commu-
nication count and communication delay. As a scoring metric, the weighted
version from Section 5.2 is used.

When looking at the results in Figures 5.12 and 5.13, an optimum is no
longer found at a count of zero, but the optimizer finds that a count of one is
best. Surprisingly, a high number of notified units is not good either, which
can be explained by the fact that both the allies and the enemies use the same
notification-reposition protocol. Since the general setup of both teams’ initial
behaviour remains largely unchanged, the enemies still have a slight advantage
in engaging in cross-fire when a high communication count is selected. Still,
these results showcase a sort of emergent buddy tactic by setting the count to
one, which works better for the allied units. Nevertheless, en masse communi-
cation benefits the enemies more, as it allows them to flank allied units from
multiple sides since each enemy patrols a different area before engaging.

5.3. IMPROVED COMMUNICATION STRATEGY 42

Figure 5.10: Visualized opponent engagement before notification of friendly
units.

Figure 5.11: Visualized tactical movement of lower two enemy units.

5.3. IMPROVED COMMUNICATION STRATEGY 43

Figure 5.12: Improved communication protocol experiment results. Points
labelled with (communication count, communication delay).

Figure 5.13: Improved communication protocol heatmap. Points labelled with
an average score of that (delay, count) parameter pair. A lower score is a
better result.

5.4. VISION CONE 44

5.4 Vision Cone

As shown in Figure 5.1, the current way for units to notice one another is by
checking collision with a circular area around themselves. If another unit B’s
geometry intersects with the area of a unit A, and B is of the opposing team,
A can start attacking this invading opponent. This simplified implementation
does not feel realistic, as when one unit is looking in the opposite direction,
it has the same vision circle as an approaching opponent. They both ’spot’
each other at the same time, whilst the tactical advantage should go to the
stealthily approaching unit. The following experiment explores the potential
alternatives, how they are implemented, and an optimization run with the
Framework to determine what vision shape works best. To avoid side effects,
the communication protocol from the previous experiments has been disabled.
In terms of the scoring metrics, the weighted scoring is re-used.

5.4.1 Problem

Humans do not have 360-degree vision, but rather a visual field of about 200-
220 degrees. Within this area, the inner 120 degrees are part of our binocular
vision range (where both eyes can see objects, allowing for depth perception)
[72]. Inside this region, there is a slice of about 60 degrees which is the actual
focus range for symbol recognition [73] and an even smaller wedge of 30 degrees
which is the preferred viewing area [74]. To mimic realistic perception for the
in-game units, similar values should be used (instead of a circular 360-degree
viewing area).

Alongside the viewing angle, a viewing distance parameter should be added.
In the game setting, this does not need to be as realistic as the angle is. This
is because NPCs that can look ‘infinitely far’ (like humans can in real life)
would make for a dull experience. When introducing a player character, they
would feel limited by screen resolution and map rendering whilst the NPCs
can see one another (and the player) from across the map. Hence, the viewing
distance should be limited to a reasonable value.

5.4.2 Optimization

This time, a very different optimization is needed in contrast to the last three
experiments. Thus, both the Optimizer as well as the game itself should be
updated to accommodate the newly designed vision cone feature. The easiest
of the two to adapt is the optimizer since it was designed with reusability in
mind. A new parameter class is introduced, being the VisionConeParameters.
The Python code for the class definition is shown in Figure 5.14, wherein both
the vision distance and angle are defined with their respective upper bounds,
lower bounds, initial values and step sizes.

5.4. VISION CONE 45

from Parameters import GenericParameters, GenericParameter

class VisionConeParameters(GenericParameters):

def __init__(self):

self.vision_distance = GenericParameter(type_="float", min_=100, max_=600,

value=300, step_size=50)

self.vision_angle = GenericParameter(type_="float", min_=10, max_=220,

value=60, step_size=15)

Figure 5.14: Python code showing an example GameParameters class defini-
tion.

To accommodate using this new parameter set instead of the old GamePa-
rameters, another derived class can be made. This time, most of the necessary
features already exist in the GameOptimizer class. Hence, a minor update to
that class is enough to allow for inheritance and using the new parameters.
This relation is visualized in Figure 5.15, where the set parameters() method
is used to set the class instance’s self.parameters value to be an instantiation
of the VisionConeParameters class. The updated run subprocess() function is
used to pass these parameters to the game executable, by providing both vi-
sion distance and vision angle parameter values as command line arguments.
Since the same scoring metric from prior experiments is used, no update to the
score() or score game() methods is required. The same holds for all the data
plotting and storing helper functions, as well as the initialization, objective,
and run methods.

Figure 5.15: Class diagram of the Vision Cone Optimizer (inheriting from the
Game Optimizer).

On top of the Optimizer updates, the actual vision cone behaviour should
be implemented into the game itself. For this, two potential candidates come
up; the first being the simplest, namely drawing an isosceles triangle that has
a height equal to the vision distance, and a top angle being the given vision
angle. Alternatively, the vision cone could be drawn as a circle slice which
has the vision distance as a radius, and the vision angle as the maximal sector
angle to draw. Both approaches are shown side by side in Figure 5.161.

1An interactive visualizer is available at https://joshuamoelans.github.io/thesis/AngleGen/

https://joshuamoelans.github.io/thesis/AngleGen/

5.4. VISION CONE 46

Figure 5.16: Comparison of two approaches to the Vision Cone implementa-
tion.

The first implementation has some issues since the top and bottom co-
ordinates of the triangle need a y-position. One way to calculate it is by
using trigonometry since the distance (being the height of the triangle) and
the top angle of the triangle are given. The y-position comes out to y =
± tan(angle/2) · distance, where the sign indicates the point being above or
below the view horizon. The problem is that the tangent function is asymp-
totic on multiples of 90 degrees. In these situations, the y coordinate would
become infinity (leading to an extremely wide triangle). To solve this, the
alternative method was implemented using circle sectors instead. These nicely
cut off the vision cone such that any visible point is at most vision distance
away from the observer. A code snippet of the GDScript implementation of
this is shown in Figure 5.17, where given an angle, distance and resolution, a
circle sector is constructed by generating a polygonal vision cone. The radius
of the circle is equal to the distance, and the angle decides the cut-off of the
circle slice. The given resolution is used to determine how many triangles are
drawn as part of the polygonal sector.

When removing the circular vision area, the ability for units to see behind
them was removed as well. However, a feature is now needed to notify any
unit under attack of the direction they’re being attacked from. Otherwise,
they could potentially keep their back turned towards the danger. For this,
a ROTATE state was added to the behaviours of the units. Once they de-
tect that they are under attack (by getting hit with a bullet), they will rotate
towards the direction they’re being hit from, rotating their vision cone with
them. This way, there is no need for a circular ‘notification’ area to inform
units of the opponents‘ presence.

5.4. VISION CONE 47

func setCone(angle, distance, resolution=30):

angle = angle * PI / 180

var half_angle = angle / 2

var step = angle / resolution

var points = PackedVector2Array()

points.append(Vector2(0, 0))

for i in range(resolution + 1):

var theta = -half_angle + step * i

var x = distance * cos(theta)

var y = distance * sin(theta)

points.append(Vector2(x, y))

points.append(Vector2(0, 0))

visionCone.polygon = points

Figure 5.17: GDScript code showing the circle sector vision cone computation.

With both the Optimizer and the game ready for action, an instance of
the Optimizer can be run. The distance and angle parameters are set up with
default values, upper and lower bounds and a step size as shown in Tables 5.3
and 5.4. Running the VisionConeOptimizer for 40 iterations, the results as
shown in Figure 5.18 and those in the heatmap in Figure 5.19 are produced.

• vision distance
How far the vision range of a unit is.

default value minimum maximum step size
300 100 600 50

Table 5.3: vision distance parameter attributes.

• vision angle
How wide the field of view is for a unit.

default value minimum maximum step size
60 10 220 15

Table 5.4: vision angle parameter attributes.

5.4. VISION CONE 48

Figure 5.18: Vision cone experiment results. Points labelled with (vi-
sion distance, vision angle).

Figure 5.19: Vision cone heatmap. Points labelled with an average score of
that (angle, distance) parameter pair. A lower score is a better result.

The optimizer’s multi-start MLSL algorithm explores a wide range of val-
ues, within the given minima and maxima. The vision angle is explored be-
tween 35 and 198 degrees, whilst most of the vision distance range is also
evaluated, seeing values between 225 and 550 matched with a variety of angle
values. A clear difference in the results can be seen in the heatmap, where a
cut-off point for the vision angle is found around the 60-75 degree point. All
values with a wider angle have worse results than those within the 35-60 range.

5.4. VISION CONE 49

A similar correlation occurs for the vision distance, albeit less noticeable. This
can be explained by the fact that this experiment reuses the updated map from
the improved communication protocol experiment in Section 5.3 (where
an additional obstacle was added, hence seeing much further does not help
the allies). Also, since the allied units attempt to breach the protected’ area
on the right, it makes sense that for them to score better, it is best that the
enemies can not see into the far distance (since this makes them aware of the
line-up of allies coming their way).

Thus, it seems like the optimizer finds angle values within the realistic
focus range of 30-60 degrees to be the best-performing ones. The introduction
of this experiment documented how humans can focus on symbols at angles
less than 60 degrees, and the preferred viewing area resides anywhere from
10-30 degrees, which is matched by the optimizer results. In terms of vision
distance, a shorter range is preferred to give the allies an upper hand.

CHAPTER 6

Conclusions and Future Work

In this thesis, automated parameter optimization for behaviour space explo-
ration was researched. This was motivated by the large cost of both time
and money that gets spent on playtesting when developing a game. To act
as a realistic showcase, a game was developed in a commercially viable engine
(the Godot game engine). A generic optimization framework was presented as
an input-output system, which uses NLopt’s suite of optimization algorithms.
Next to the generic framework, instructions for translating it into a concrete
class for optimizing a video game are given. Several experiments emulating
an iterative feature-finetune cycle were done, each providing valuable insights
into new or existing in-game functionality and behaviour.

The main contributions are described once more in Section 6.1, with addi-
tional contextualization given the contents of the research done. Lastly, some
future work is described in Section 6.2

6.1 Contributions

Given the contents of all prior Chapters, another look at the main contributions
can now contextualize them within the scope of the thesis.

6.1.1 Optimization Framework

Chapter 4 presents both the generic framework as well as the concrete imple-
mentation needed to optimize a video game. Additionally, an abstract and

6.1. CONTRIBUTIONS 51

concrete parameter class is designed to simplify the process of giving the opti-
mizer upper and lower bounds, initial values, initial step sizes and parameter
types.

To showcase how this framework operates in the video game development
setting, a simple tactical top-down shooter game is built in Chapter 3 by using
the commercial Godot Engine. During the design process, some thought is
given to providing the optimizer framework with an easy way to input param-
eter values, as well as a method to extract output by saving the full game state.
To reduce variance in the experiment output, the game is also prepared for
in-game and across-game instancing. This is achieved by replicating a single
instance of the game world into a grid (running in one executable) and running
multiple of these grids in separate windows.

The additional workload for adding the hooks needed for optimization into
an existing game is negligible. The input parameter values can just be passed
to the executable by command line arguments and parsed into their proper
scripts by trickling down through the game’s code. Since most games have
some method of saving data already, adding the hook for saving the output
(being the state) of the game into a file is a minimal effort as well.

6.1.2 Proof-of-Concept Experiments

In Chapter 5 both elements of the Optimization Framework as well as the
example video game are used to analyze a workflow combining the power of
optimization with large-scale game simulation. This methodology intertwines
both feature implementation with automated parameter optimization, intend-
ing to find values for features within the realm of tactical communication and
character behaviour.

An iterative procedure is followed where the game is analyzed as-is, and
then a suggested new feature or improvement on an existing feature is pro-
posed. By implementing this feature into the game, setting up the framework’s
optimization parameters and performing a full optimization cycle, interesting
results are produced which can help inform decisions in the game development
process.

This thesis explores a basic communication strategy between military units,
of which a first implementation is shown to be incomplete by the optimizer (as
the results do not match intuition). By improving the implemented notification
protocol, a second run of the optimizer results in an emergent buddy tactic
which is more realistic. Lastly, an experiment is performed on NPC vision
cones, where the results match the biology of the preferred viewing area for
human vision.

6.2. FUTURE WORK 52

6.2 Future Work

In this Section, some potential future work related to the thesis is laid out.
These range from game-specific ideas (such as improved pathfinding algo-
rithms, alternative features and their accompanying Optimizer experiments)
as well as game-agnostic concepts (such as generating code from behaviour
statecharts, using scoring metrics to set game difficulty or even learning player
movement).

6.2.1 Using Metrics for Game Difficulty

As seen in Chapter 5 different scoring metrics can lead to vastly different results
in the Optimizer. An example of a simple metric using one value extracted
from a game was shown, as well as a more involved weighted scoring that was
a measure of how often the allied units win. From this second one, a potential
research avenue can be derived.

Games often offer multiple difficulty levels to make it easier or harder for
the player to win. During the game’s development, a lot of time can be spent
not only optimizing values for a single result but also making sure that the
game feels appropriately demanding for the selected difficulty level. Here the
proposed Optimizer can be employed, for example by setting a threshold on
the average win or lose percentage depending on the selected difficulty. That
way, automatically finding good parameter values for each of the difficulty
levels can help make the game feel more balanced without requiring extensive
manual fine-tuning.

A similar concept has been explored by Robin Lievrouw in their thesis
on Applying Dynamic Game Difficulty Adjustment Using Deep Reinforcement
Learning [75]. It differs from the future work concept this thesis puts forth
by having the difficulty adapt based on the actual player playing the game,
and not by pre-learning set difficulties through parameter optimization. The
results from the research show that for humans the changes are too minute to
lead to any mood change, implying that the system might be overkill for what
it tries to achieve. Finding a middle ground between general difficulty learning
by parameter optimization and the dynamic difficulty adjustment idea seems
like an interesting area of research.

6.2.2 Statechart Code Generation

In Chapter 3 Section 3.2.4 the behaviour of in-game units is given entirely in
terms of a statechart. In implementation, this is then translated manually into
GDScript code specific to the Godot Engine. However, this statechart could
be reused for alternate code generations to other game engines such as Unity
[56] or Unreal [55], or even JavaScript frameworks like Phaser [76] or PixiJS

6.2. FUTURE WORK 53

[77]. If the same input-output mechanisms are provided in the alternative
game implementations, these too could slot into the framework for automated
optimization.

It would also be possible to use a specific engine/framework to do the opti-
mization loop, whilst implementing the full game (with the learned parameters
embedded into the statechart) in another engine. This can be useful when a
game requires high graphical fidelity upon release (which can more easily be
achieved in Unreal Engine) but the learning can happen at a lower resolution’
engine like Godot.

This concept is a similar yet toned-down version of the research done by
Togelius and Schmidhuber in their paper An Experiment in Automatic Game
Design [78]. They propose generating a game from a set of rules (rather than
behaviours from a statechart) which, given the vast space of even a constrained
set of game states, gives way for millions of potential results. Not all of these
are necessarily playable, yet they can serve as exploratory prototypes which
might turn out to create some emergent new game genre.

6.2.3 Cooperative Pathfinding

As mentioned in Section 3.2.5 multi-agent pathfinding is a hard problem to
solve. In the thesis game implementation, this was largely ignored to avoid
overcomplicating this small aspect of the game. However, some techniques
have been proposed that aim to implement a smarter’ pathfinding that can
run dynamically. David Silver’s paper on WHCA* [79] is an example of such
an algorithm, which uses three-dimensional coordinates to find paths on a two-
dimensional grid. It is still based on the A* algorithm but uses non-colliding
routes and a windowed hierarchical search.

The technique proposes adding a dimension t to the (x, y) coordinate grid.
This dimension represents the time aspect, such that any agent that plans out
a path from point (xa, ya) to (xb, yb) reserves the in-between positions (xi, yi)
at the estimated time i (and potentially a buffer ε around the timestamp i)
such that they might pass through that coordinate marking it as impassable
for any other agents. This search is done in so-called search windows’ to limit
the number of computations needed. This way, an agent always computes a
partial route towards their end goal and recomputes at either fixed timestamps
(offset with other agents to lower peak computation) or after a certain distance
is travelled.

6.2.4 Learning Player Movement

Until now the only optimization that was done happened on the AI of in-game
NPCs. It might however be interesting to allow for parameterizing player char-
acters as well, optimizing both their variable values as well as the interaction

6.2. FUTURE WORK 54

with NPC systems. Simple player behaviour can be programmed by taking
NPC behaviour and retrofitting it into autonomous player controls. However,
nowadays it is possible to learn player movement through Neural Networks.
Similar to Google Deepmind’s AlphaGo [12], a network can be trained on
both self-play and collected human experiences (for example from a limited
amount of playtesters). Creating an artificial player this way can provide
a better groundwork for parameter optimization, as often there is a certain
nuance to how people play games as opposed to a manually implemented sim-
ulation thereof. Balancing the self-learning and experience-learning aspects
of the network training phase is critical since the artificial player should not
feel too artificial (and keep using a lot of the collected human experience).
This approach can help the framework build an artificial dummy human to
also optimize parameters for their in-game player character, as well as learn
parameters of the auxiliary systems that interact with them.

6.2.5 Additional Optimizer Experiments

For the specific game that was built for this thesis, some additional experiments
were designed. This Section briefly outlines some of the ideas, and why they
are interesting features to investigate.

Enemy Priority
Currently, all units have an ‘enemy buffer’ queue which tells them the target
priority of enemies. However, no feature smartly decides what these priorities
should be. Instead of relying on the first-come-first-served system as it is now,
it would make sense to assign weights to the spotted opponents to be able to
reassign priorities dynamically. For example, if a unit knows of an enemy’s
position, it might not make sense to attack that enemy first if their nearby
friends are already attacking someone else.

In terms of parameters to optimize, this feature could introduce some
weights that act as attention dividers; how much does being nearby influ-
ence the necessity of a reaction? Is it better to attack in a group or do the
results indicate that units should attack separately? Running the Optimizer
and letting it play hundreds of games can give an insight into what weights
positively influence the chances of winning.

Line-of-Sight Avoidance
On top of the cooperative pathfinding concept from Section 6.2.3 there are
still some other issues with unit movement specific to the game designed for
this thesis. In general solving movement by avoiding intersecting paths is a
great first step, but in a shooter scenario, it would make sense that the line of
fire of friendly units is avoided. This was explored in a research internship by
Barmon in 2018, where coordination to reduce the impact of friendly fire was

6.2. FUTURE WORK 55

introduced [80].
The proposed solution involves an adaptation to the A* pathfinding al-

gorithm, where a restricted area is drawn in front of any ranged unit which
heavily increases the weight of the positions within this area. When another
unit tries to find a path to a position, this path will avoid the restricted area as
much as possible (since it is better to cross when under attack, so not crossing
could be worse). Additionally, the idea of target selection is presented. This
ties in with the previous experiment idea of Enemy Priority, since friendly
fire can be reduced by ensuring enemies are targetted at appropriate times,
avoiding intersecting paths with active lines of fire.

To implement this in-game, the vision cone from the experiment in Section
5.4 as shown in Figure 6.1 can be reused. The area that the cone overlaps
should be marked as terrain that should not be traversed, which is achieved by
assigning higher weights to the pathfinding grid cells. This can be visualized
as red-coloured cells, indicating a non-zero weight in that area. A potential
parameter set to optimize would then be the actual weights that are assigned
to each grid cell and how this influences the amount of friendly fire. In contrast
to the prior research by Barmon, a non-uniform weight could be used to further
discourage traversing certain areas of the vision cone.

Figure 6.1: Visualization of vision cone and accompanying A* grid weights for
line-of-sight avoidance.

Getting Attacked Response
In the first implementation whenever a unit got attacked the response was
implicit by nature of the circular vision area around each unit. They would
either see the opponent at the same time that they got spotted, or when getting
hit a minor increase in vision area was done to avoid needing pixel-perfect
overlap (simulating a sort of heightened awareness). The final experiment in
Section 5.4 improves upon this behaviour by changing the vision range to a
conical shape. When a unit gets hit now, it turns towards the direction of the
bullet. This is already an improved behaviour, yet it is not entirely natural;
the unit under attack starts attacking the opponent but has no behaviour to
strategically position themselves or to try and shoot back whilst running away.

The feature to implement and optimize would be a tactical repositioning
away from the bullet direction. This can for example be done via spline move-
ment where a unit is instructed to move from A to B via in-between point C to
get to a tactical position (e.g., closer to the opponent or closer to their friends).
An example is shown in Figure 6.2 where an incoming attack vector from the
right results in a reposition spline going around the incoming attack line. The
parameters for this could be the maximal/minimal movement distance, how
curvy the spline path should be or even the decision mechanism that makes
a unit stay in their spot (for example when they have more health than their
squad mates) or run away.

Figure 6.2: Visualization of incoming attack vector and resulting tactical repo-
sition vector.

Squadron Movement
In the current game implementation a squadron of units moving from A to B
line up perfectly, following neatly behind one another. This is not quite real-
istic, as the so-called ‘column’ or ‘single-file’ movement is reserved for routes
where enemy contact is not expected [81]. Alternative patterns such as Wedge,
Staggered Column, Vee or Line make more sense in a scenario where an active
threat is present, which is the case in the game environment designed for this
thesis. A visual comparison of these formations is shown in figure 6.3.

Hence, as a potential next feature, simple squadron movement could be
added. These can each be parameterized on their own (e.g., how much distance
between units, how far they should be spread, maximal angles between units,
...) to find an optimum for a specific pattern, or they can be selected through
the use of an enumerator-like parameter, which then evaluates how good each
formation is within the game setting.

Figure 6.3: Visualization of different tactical formations for squadron move-
ment.

Bibliography

[1] R. Verschelde, “Engines/frameworks used in Global Game Jam,”
Accessed on 2024-04-13. [Online]. Available: https://twitter.com/Akien/
status/1751904118132683081

[2] K. Vanherpen, J. Denil, P. De Meulenaere, and H. Vangheluwe, “Design-
space exploration in model driven engineering,” in SOCS-TR-2014.4.
McGill University, 2014.

[3] L. M. Zintgraf, L. Feng, M. Igl, K. Hartikainen, K. Hofmann, and
S. Whiteson, “Exploration in approximate hyper-state space for meta
reinforcement learning,” CoRR, vol. abs/2010.01062, 2020. [Online].
Available: https://arxiv.org/abs/2010.01062

[4] G. Hackenberg and D. Bytschkow, “Towards Early Emergent Property
Understanding,” in Proceedings of the 1st Extreme Modeling Workshop at
MODELS, 2012.

[5] J. Gomes, P. Mariano, and A. L. Christensen, “Systematic Derivation of
Behaviour Characterisations in Evolutionary Robotics,” arXiv preprint
arXiv:1407.0577, 2014.

[6] D. Harel, “Statecharts: a visual formalism for complex systems,” Science
of Computer Programming, vol. 8, no. 3, pp. 231–274, 1987.

[7] S. Bromley, “How to budget for games user research,” 2023, Accessed
on 2024-03-28. [Online]. Available: https://gamesuserresearch.com/
how-to-budget-for-games-user-research/

https://twitter.com/Akien/status/1751904118132683081
https://twitter.com/Akien/status/1751904118132683081
https://arxiv.org/abs/2010.01062
https://gamesuserresearch.com/how-to-budget-for-games-user-research/
https://gamesuserresearch.com/how-to-budget-for-games-user-research/

[8] E. Crichton-Stuart, “Indie games claim 31% of all steam revenue,”
March 10 2024, Accessed on 2024-03-28. [Online]. Available: https:
//gam3s.gg/news/indie-games-claim-31-perfect-of-all-steam-revenue/

[9] S. G. Johnson, “The NLopt nonlinear-optimization package,” https://
github.com/stevengj/nlopt, 2007, Accessed on 2024-03-24.

[10] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virta-
nen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern,
M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. Fern-
ndez del Ro, M. Wiebe, P. Peterson, P. Grard-Marchant, K. Sheppard,
T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant,
“Array programming with NumPy,” Nature, vol. 585, pp. 357–362, 2020.

[11] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in
Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007.

[12] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the game of go with deep neural networks and tree search,”
Nature, vol. 529, pp. 484–503, 2016.

[13] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering the
Game of Go without Human Knowledge,” Nature, vol. 550, no. 7676, pp.
354–359, 2017.

[14] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel et al., “Mastering Chess and
Shogi by Self-Play with a General Reinforcement Learning Algorithm,”
arXiv preprint arXiv:1712.01815, 2017.

[15] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre,
S. Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel et al., “Mas-
tering Atari, Go, Chess and Shogi by Planning with a Learned Model,”
Nature, vol. 588, no. 7839, pp. 604–609, 2020.

[16] J. R. Quiñones and J. Fernández Leiva, Antonio, “Automated video game
parameter tuning with XVGDL+,” Journal of Universal Computer Sci-
ence, vol. 28, no. 12, pp. 1282–1311, 2022.

[17] R. D. Gaina, R. Volkovas, C. G. Daz, and R. Davidson, “Automatic game
tuning for strategic diversity,” in 2017 9th Computer Science and Elec-
tronic Engineering (CEEC), 2017, pp. 195–200.

https://gam3s.gg/news/indie-games-claim-31-perfect-of-all-steam-revenue/
https://gam3s.gg/news/indie-games-claim-31-perfect-of-all-steam-revenue/
https://github.com/stevengj/nlopt
https://github.com/stevengj/nlopt

[18] L. Kocsis, C. Szepesvári, and M. H. M. Winands, “RSPSA: Enhanced
Parameter Optimization in Games,” in Advances in Computer Games,
H. J. van den Herik, S.-C. Hsu, T.-s. Hsu, and H. H. L. M. J. Donkers,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 39–56.

[19] K. Chang, B. Aytemiz, and A. M. Smith, “Reveal-more: Amplifying hu-
man effort in quality assurance testing using automated exploration,” in
2019 IEEE Conference on Games (CoG), 2019, pp. 1–8.

[20] C. Dragert, J. Kienzle, and C. Verbrugge, “Statechart-based AI in prac-
tice,” Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, vol. 8, no. 1, pp. 136–141, Jun. 2021.

[21] H. Warpefelt and B. Str̊åat, “Breaking immersion by creating social unbe-
lievabilty,” in Proceedings of AISB 2013 Convention. Social Coordination:
Principles, Artefacts and Theories (SOCIAL. PATH), 2013, pp. 92–100.

[22] Wikipedia contributors, “List of video game genres —
Wikipedia, the free encyclopedia,” 2024, Accessed on 2024-04-
13. [Online]. Available: https://en.wikipedia.org/w/index.php?title=
List of video game genres&oldid=1211368541

[23] Ubisoft, “Rainbow Six Siege,” Accessed on 2024-04-08. [Online].
Available: https://www.ubisoft.com/en-gb/game/rainbow-six/siege

[24] Irrational Games, “SWAT 4,” Accessed on 2024-04-08. [Online].
Available: https://swat-4.fandom.com/wiki/SWAT 4

[25] VOID Interactive, “Ready or Not,” Accessed on 2024-04-08. [Online].
Available: https://voidinteractive.net/

[26] Blizzard Entertainment, “Starcraft,” Accessed on 2024-04-08. [Online].
Available: https://starcraft.blizzard.com/en-us/

[27] Sid Meier, “Civilization,” Accessed on 2024-04-08. [Online]. Available:
https://civilization.2k.com/civ/

[28] Subset Games, “Into the Breach,” Accessed on 2024-04-08. [Online].
Available: https://subsetgames.com/itb.html

[29] Colossal Order, “Cities Skylines,” Accessed on 2024-04-08. [Online].
Available: https://www.paradoxinteractive.com/games/cities-skylines/
about

[30] Asobo Studio, “Flight Simulator,” Accessed on 2024-04-08. [Online].
Available: https://www.flightsimulator.com/

https://en.wikipedia.org/w/index.php?title=List_of_video_game_genres&oldid=1211368541
https://en.wikipedia.org/w/index.php?title=List_of_video_game_genres&oldid=1211368541
https://www.ubisoft.com/en-gb/game/rainbow-six/siege
https://swat-4.fandom.com/wiki/SWAT_4
https://voidinteractive.net/
https://starcraft.blizzard.com/en-us/
https://civilization.2k.com/civ/
https://subsetgames.com/itb.html
https://www.paradoxinteractive.com/games/cities-skylines/about
https://www.paradoxinteractive.com/games/cities-skylines/about
https://www.flightsimulator.com/

[31] Eric ”ConcernedApe” Barone, “Stardew Valley,” Accessed on 2024-04-08.
[Online]. Available: https://www.stardewvalley.net/

[32] Ludeon Studios, “Rimworld,” Accessed on 2024-04-08. [Online]. Available:
https://rimworldgame.com/

[33] 11 bit studios, “Frostpunk,” Accessed on 2024-04-08. [Online]. Available:
https://www.frostpunkgame.com/

[34] Creative Assembly, “Total War,” Accessed on 2024-04-08. [Online].
Available: https://www.totalwar.com/

[35] Capcom, “Street Fighter,” Accessed on 2024-04-08. [Online]. Available:
https://www.streetfighter.com/

[36] Dan Fornace, “Rivals of Aether,” Accessed on 2024-04-08. [Online].
Available: https://rivalsofaether.com/

[37] Bandai Namco Entertainment, “Tekken,” Accessed on 2024-04-08.
[Online]. Available: https://tekken.com/

[38] Blizzard Entertainment, “World of Warcraft,” Accessed on 2024-04-08.
[Online]. Available: https://worldofwarcraft.blizzard.com/en-us/

[39] Pearl Abyss, “Black Desert Online,” Accessed on 2024-04-08. [Online].
Available: https://www.naeu.playblackdesert.com/

[40] Crema, “Temtem,” Accessed on 2024-04-08. [Online]. Available:
https://crema.gg/games/temtem/

[41] Square Enix, “Final Fantasy XV,” Accessed on 2024-04-08. [Online].
Available: https://finalfantasyxv.square-enix-games.com/

[42] CD Projekt RED, “The Witcher,” Accessed on 2024-04-08. [Online].
Available: https://www.thewitcher.com/be/en/

[43] Toby Fox, “Undertale,” Accessed on 2024-04-08. [Online]. Available:
https://undertale.com/

[44] Endnight Games, “The Forest,” Accessed on 2024-04-08. [Online].
Available: https://endnightgames.com/games/the-forest

[45] Studio Wildcard, “ARK: Survival Evolved,” Accessed on 2024-04-08.
[Online]. Available: https://playark.com/ark-survival-evolved/

[46] Iron Gate Studio, “Valheim,” Accessed on 2024-04-08. [Online].
Available: https://www.valheimgame.com/

https://www.stardewvalley.net/
https://rimworldgame.com/
https://www.frostpunkgame.com/
https://www.totalwar.com/
https://www.streetfighter.com/
https://rivalsofaether.com/
https://tekken.com/
https://worldofwarcraft.blizzard.com/en-us/
https://www.naeu.playblackdesert.com/
https://crema.gg/games/temtem/
https://finalfantasyxv.square-enix-games.com/
https://www.thewitcher.com/be/en/
https://undertale.com/
https://endnightgames.com/games/the-forest
https://playark.com/ark-survival-evolved/
https://www.valheimgame.com/

[47] Valve, “Portal,” Accessed on 2024-04-08. [Online]. Available: https:
//developer.valvesoftware.com/wiki/Portal

[48] Playdead, “LIMBO,” Accessed on 2024-04-08. [Online]. Available:
https://playdead.com/games/limbo/

[49] Croteam, “The Talos Principle,” Accessed on 2024-04-08. [Online].
Available: https://www.thetalosprinciple.com/

[50] Nintendo, “Super Mario Odyssey,” Accessed on 2024-04-08. [Online].
Available: https://supermario.nintendo.com/

[51] Naughty Dog, “Crash Bandicoot,” Accessed on 2024-04-08. [Online].
Available: https://www.crashbandicoot.com/

[52] Maddy Makes Games, “Celeste,” Accessed on 2024-04-08. [Online].
Available: https://www.celestegame.com/

[53] S. A. Weil, T. S. Hussain, T. T. Brunyé, F. Diedrich, E. Entin, W. Fer-
guson, J. Sidman, L. Spahr, J. MacMillan, and B. Roberts, “Assessing
the potential of massive multi-player games to be tools for military train-
ing,” in Proceedings of the interservice/industry training, simulation, and
education conference (I/ITSEC), 2005.

[54] J. Linietsky and A. Manzur, “Godot Engine,” Accessed on 2024-04-08.
[Online]. Available: https://godotengine.org/

[55] Epic Games, “Unreal Engine,” Accessed on 2024-04-08. [Online].
Available: https://www.unrealengine.com/en-US

[56] Unity Technologies, “Unity,” Accessed on 2024-04-08. [Online]. Available:
https://unity.com/

[57] Scirra, “Construct 3,” Accessed on 2024-04-08. [Online]. Available:
https://www.construct.net/en

[58] ASCII, Enterbrain, “RPG Maker,” Accessed on 2024-04-08. [Online].
Available: https://www.rpgmakerweb.com/

[59] YoYo Games, “GameMaker,” Accessed on 2024-04-08. [Online]. Available:
https://gamemaker.io/en

[60] S. Sanshiro, “GODOT: The Open Source Engine Be-
hind The Interactive Adventures of Dog Mendonça &
Pizza Boy,” October 31 2014, Accessed on 2024-04-03.
[Online]. Available: https://www.gamingonlinux.com/articles/

https://developer.valvesoftware.com/wiki/Portal
https://developer.valvesoftware.com/wiki/Portal
https://playdead.com/games/limbo/
https://www.thetalosprinciple.com/
https://supermario.nintendo.com/
https://www.crashbandicoot.com/
https://www.celestegame.com/
https://godotengine.org/
https://www.unrealengine.com/en-US
https://unity.com/
https://www.construct.net/en
https://www.rpgmakerweb.com/
https://gamemaker.io/en
https://www.gamingonlinux.com/articles/godot-the-open-source-engine-behind-the-interactive-adventures-of-dog-mendon%C3%A7a-pizza-boy.4520/
https://www.gamingonlinux.com/articles/godot-the-open-source-engine-behind-the-interactive-adventures-of-dog-mendon%C3%A7a-pizza-boy.4520/
https://www.gamingonlinux.com/articles/godot-the-open-source-engine-behind-the-interactive-adventures-of-dog-mendon%C3%A7a-pizza-boy.4520/

godot-the-open-source-engine-behind-the-interactive-adventures-of-dog-mendon%
C3%A7a-pizza-boy.4520/

[61] J. Linietsky, A. Manzur, and the Godot community, “Godot docs,”
Accessed on 2024-04-08. [Online]. Available: https://docs.godotengine.
org/en/stable/index.html

[62] A. Wilkes, “Signals in godot,” Accessed on 2024-04-08. [Online].
Available: https://gdscript.com/solutions/signals-godot/

[63] G. Docs, “Using Signals,” November 10 2023, Accessed on 2024-
04-17. [Online]. Available: https://docs.godotengine.org/en/stable/
getting started/step by step/signals.html

[64] X. Cui and H. Shi, “A*-based pathfinding in modern computer games,”
International Journal of Computer Science and Network Security, vol. 11,
no. 1, pp. 125–130, 2011.

[65] K.-H. C. Wang, A. Botea et al., “Fast and Memory-Efficient Multi-Agent
Pathfinding.” in ICAPS, vol. 8, 2008, pp. 380–387.

[66] J.-D. historianX Perry, “Incubation: Exploration With a Plan,” June
18 2020, Accessed on 2024-05-10. [Online]. Available: https://www.
riotgames.com/en/r-and-d-office/incubation-exploration-with-a-plan

[67] K. Railey, “Top 5 Mistakes Made by Indie Game Developers,”
October 29 2021, Accessed on 2024-05-10. [Online]. Available:
https://flowlab.io/lab/blog/indie-dev-mistakes

[68] W. Leblanc, “Video Games Stuck In Development Hell:
Part 1,” November 1 2021, Accessed on 2024-05-10.
[Online]. Available: https://www.gameinformer.com/2021/11/01/
video-games-stuck-in-development-hell-part-1

[69] A. H. G. R. Kan and G. T. Timmer, “Stochastic global optimization meth-
ods part II: Multi level methods,” Mathematical Programming, vol. 39, pp.
57–78, 1987.

[70] M. J. D. Powell, “A direct search optimization method that models the
objective and constraint functions by linear interpolation,” in Advances
in Optimization and Numerical Analysis, ser. Mathematics and Its Appli-
cations, S. Gomez and J.-P. Hennart, Eds. Springer, 1994, vol. 275, pp.
51–67.

https://www.gamingonlinux.com/articles/godot-the-open-source-engine-behind-the-interactive-adventures-of-dog-mendon%C3%A7a-pizza-boy.4520/
https://www.gamingonlinux.com/articles/godot-the-open-source-engine-behind-the-interactive-adventures-of-dog-mendon%C3%A7a-pizza-boy.4520/
https://www.gamingonlinux.com/articles/godot-the-open-source-engine-behind-the-interactive-adventures-of-dog-mendon%C3%A7a-pizza-boy.4520/
https://www.gamingonlinux.com/articles/godot-the-open-source-engine-behind-the-interactive-adventures-of-dog-mendon%C3%A7a-pizza-boy.4520/
https://docs.godotengine.org/en/stable/index.html
https://docs.godotengine.org/en/stable/index.html
https://gdscript.com/solutions/signals-godot/
https://docs.godotengine.org/en/stable/getting_started/step_by_step/signals.html
https://docs.godotengine.org/en/stable/getting_started/step_by_step/signals.html
https://www.riotgames.com/en/r-and-d-office/incubation-exploration-with-a-plan
https://www.riotgames.com/en/r-and-d-office/incubation-exploration-with-a-plan
https://flowlab.io/lab/blog/indie-dev-mistakes
https://www.gameinformer.com/2021/11/01/video-games-stuck-in-development-hell-part-1
https://www.gameinformer.com/2021/11/01/video-games-stuck-in-development-hell-part-1

[71] Z. Zhang, “PRIMA: Reference Implementation for Powell’s Methods
with Modernization and Amelioration,” 2023, Accessed 2024-05-12, DOI:
10.5281/zenodo.8052654. [Online]. Available: http://www.libprima.net

[72] Wikipedia contributors, “Field of view — Wikipedia, the free
encyclopedia,” 2024, Accessed 2024-05-29. [Online]. Available: https:
//en.wikipedia.org/w/index.php?title=Field of view&oldid=1223601071

[73] R. Gunasekar and N. K. Chandramohan, “Development of image acquisi-
tion system to eleminate blind spot of a-pillar,” International Journal of
Scientific Research & Management Studies, vol. 8, pp. 145–151, 10 2018.

[74] S. M. LaValle, 2019, Accessed on 2024-05-29. [Online]. Available:
https://msl.cs.uiuc.edu/vr/vrch5.pdf

[75] R. Lievrouw, “Applying Dynamic Game Difficulty Adjustment Using
Deep Reinforcement Learning,” Master’s thesis, Ghent University, 2020.

[76] P. Studio Inc, “Phaser,” Accessed on 2024-05-31. [Online]. Available:
https://phaser.io/

[77] M. Groves and P. team, “Pixijs,” Accessed on 2024-05-31. [Online].
Available: https://pixijs.com/

[78] J. Togelius and J. Schmidhuber, “An experiment in automatic game de-
sign,” 2008 IEEE Symposium on Computational Intelligence and Games,
CIG 2008, pp. 111 – 118, January 2009.

[79] D. Silver, “Cooperative Pathfinding,” Proceedings of the AAAI Con-
ference on Artificial Intelligence and Interactive Digital Entertainment,
vol. 1, no. 1, pp. 117–122, Sep. 2021.

[80] N. de Barmon Vianney, “Coordination to Reduce the Impact of Friendly
Fire,” Académie Militaire de Saint-Cyr Coëtquidan, Tech. Rep., 2018.

[81] Department of the Army, “Army Training Publication (ATP) 3-21.8:
Infantry Platoon and Squad,” Accessed on 2024-06-01. [Online].
Available: https://www.moore.army.mil/Infantry/DoctrineSupplement/
ATP3-21.8/

[82] lex92, “Review for Ready or Not,” Accessed on 2024-04-06. [On-
line]. Available: https://steamcommunity.com/id/lex92/recommended/
1144200/

[83] SatKaz, “Review for Ready or Not,” Accessed on 2024-04-06. [On-
line]. Available: https://steamcommunity.com/id/satkaz/recommended/
1144200/

http://www.libprima.net
https://en.wikipedia.org/w/index.php?title=Field_of_view&oldid=1223601071
https://en.wikipedia.org/w/index.php?title=Field_of_view&oldid=1223601071
https://msl.cs.uiuc.edu/vr/vrch5.pdf
https://phaser.io/
https://pixijs.com/
https://www.moore.army.mil/Infantry/DoctrineSupplement/ATP3-21.8/
https://www.moore.army.mil/Infantry/DoctrineSupplement/ATP3-21.8/
https://steamcommunity.com/id/lex92/recommended/1144200/
https://steamcommunity.com/id/lex92/recommended/1144200/
https://steamcommunity.com/id/satkaz/recommended/1144200/
https://steamcommunity.com/id/satkaz/recommended/1144200/

[84] Prussian Wolf, “Review for Ready or Not,” Accessed on 2024-
04-06. [Online]. Available: https://steamcommunity.com/profiles/
76561198078121853/recommended/1144200/

[85] AxeWould, “SWAT 4 user reviews - Metacritic,” Accessed on 2024-
04-06. [Online]. Available: https://www.metacritic.com/game/swat-4/
user-reviews/?platform=pc

[86] Welkore, “SWAT 4 user reviews - Metacritic,” Accessed on 2024-
04-06. [Online]. Available: https://www.metacritic.com/game/swat-4/
user-reviews/?platform=pc

[87] AlexFili, “SWAT 4 user reviews - Metacritic,” Accessed on 2024-
04-06. [Online]. Available: https://www.metacritic.com/game/swat-4/
user-reviews/?platform=pc

[88] DukeoftheAges, “Review for Spec Ops: The Line,” Accessed
on 2024-04-06. [Online]. Available: https://steamcommunity.com/id/
DukeoftheAges/recommended/50300/

[89] ZarquonReturns, “Review for Spec Ops: The Line,” Accessed on
2024-04-06. [Online]. Available: https://steamcommunity.com/profiles/
76561198002009022/recommended/50300/

[90] GrampleGust, “Review for Spec Ops: The Line,” Accessed on 2024-04-
06. [Online]. Available: https://steamcommunity.com/id/GrampleGust/
recommended/50300/

https://steamcommunity.com/profiles/76561198078121853/recommended/1144200/
https://steamcommunity.com/profiles/76561198078121853/recommended/1144200/
https://www.metacritic.com/game/swat-4/user-reviews/?platform=pc
https://www.metacritic.com/game/swat-4/user-reviews/?platform=pc
https://www.metacritic.com/game/swat-4/user-reviews/?platform=pc
https://www.metacritic.com/game/swat-4/user-reviews/?platform=pc
https://www.metacritic.com/game/swat-4/user-reviews/?platform=pc
https://www.metacritic.com/game/swat-4/user-reviews/?platform=pc
https://steamcommunity.com/id/DukeoftheAges/recommended/50300/
https://steamcommunity.com/id/DukeoftheAges/recommended/50300/
https://steamcommunity.com/profiles/76561198002009022/recommended/50300/
https://steamcommunity.com/profiles/76561198002009022/recommended/50300/
https://steamcommunity.com/id/GrampleGust/recommended/50300/
https://steamcommunity.com/id/GrampleGust/recommended/50300/

Appendices

APPENDIX A

Additional figures

A.1 Game State Output

1 {

2 "allies": {

3 "Ally": {

4 "aim_direction": null ,

5 "ammo": 25,

6 "goal_position": "(1515 , 209)",

7 "health": 100,

8 "id": "Ally",

9 "initial_locations": [

10 "(1789 , 523)"

11],

12 "path": [

13 "(1344 , 224)",

14 "(1515 , 209)"

15],

16 "position": "(1375.841 , 224.0002)",

17 "previous_state": 0,

18 "reload_count": 0,

19 "state": 2,

20 "target": null},

21 "Ally2": {

22 "aim_direction": "(1692.697 , 80.07452)",

23 "ammo": 2,

24 "goal_position": "(1515 , 209)",

25 "health": 100,

26 "id": "Ally2",

27 "initial_locations": [

28 "(1789 , 523)"

29],

30 "path": [

31 "(1408 , 224)",

32 "(1472 , 224)",

33 "(1515 , 209)"

34],

35 "position": "(1416.16 , 224)",

36 "previous_state": 2,

37 "reload_count": 0,

38 "state": 1,

39 "target": "Enemy3 "}

40 },

41 "bullets": {

42 "0": {

43 "DIR": "(0.858848 , 0.51223)",

44 "POS": "(1983.232 , 611.1429)",

45 "SPEED": 10,

46 "TEAM": 0

47 }

48 },

49 "damage_done": {

50 "allies": 260,

51 "enemies": 0

52 },

53 "enemies": {

54 "Enemy": {

55 "aim_direction": null ,

56 "ammo": 10,

57 "goal_position": "(1624.6 , 387.2739)",

58 "health": 0,

59 "id": "Enemy",

60 "initial_locations": [],

61 "path": [

62 "(1624.6 , 387.2739)"

63],

64 "position": "(1626.91 , 383.4973)",

65 "previous_state": -1,

66 "reload_count": 0,

67 "state": 0,

68 "target": null},

69 "Enemy2": {

70 "aim_direction": null ,

71 "ammo": 10,

72 "goal_position": "(1648.884 , 601.8615)",

73 "health": 40,

74 "id": "Enemy2",

75 "initial_locations": [],

76 "path": [

77 "(1632 , 576)",

78 "(1648.884 , 601.8615)"

79],

80 "position": "(1641.406 , 588.5283)",

81 "previous_state": -1,

82 "reload_count": 0,

83 "state": 0,

84 "target": null}

85 },

86 "team_damage": {

87 "allies": 0,

88 "enemies": 0

89 },

90 "timer": 15.5498733333328

91 }

APPENDIX B

Additional Tables

B.1 Combat Shooter Games - User Reviews

game review snippet user

Ready or Not

A great game held back by terrible AI [...]. lex92 [82]

While SWAT AI is improved, they still have massive problems
with reacting to gunfire [...].

satkaz [83]

The AI is just so far removed from natural behavior that it com-
pletely ruins all immersion.

Prussian Wolf [84]

SWAT 4

Ill be honest [...] the intelligence of your partners is simply below
par [...] you didnt pass the mission through your own efforts, but
because the AI of your partners worked well and wasnt stupid
[...].

AxeWould [85]

Talking about AI, this is the dumbest AI I ever seen. Welkore [86]

The AI isnt perfect but often does a good job. Theyll often ask
you to move out of the way which can be annoying [...].

AlexFili [87]

Spec Ops: The Line

[...] the friendly AI is dumb, so you will do all the work. DukeoftheAges [88]

Combat is jannnnkkkkyyyyyy as heck. [...] your AI companions
stand around not killing things.

ZarquonReturns [89]

Worst of all: Clumsy AI companions which run into full groups
of enemies [...].

GrampleGust [90]

Table B.1: Table of negative user reviews mentioning AI for Ready or Not,
SWAT 4 and Spec Ops: The Line.

	List of Figures
	List of Tables
	Acknowledgements
	Abstract
	Nederlandstalige Samenvatting
	Introduction
	Motivation
	Contributions
	Technical Remarks
	Outline

	Related Work
	Parameter Tuning With XVGDL+
	Strategic Diversity
	RPSPA
	Reveal-More
	Statechart-Based AI in Practice

	Building the Game
	Choice of Game and Engine
	Introduction to Godot

	Building the Game's Systems
	Design Overview
	Manager Structure
	Visuals
	Unit AI
	Pathfinding
	Player Controls

	Simulation Preparation
	Game State
	Saving and Loading
	Instancing
	In-Game vs. Across-Game
	Performance Comparison

	Building the Framework
	Framework Approach
	Generic Framework
	Generic Parameters
	Generic Optimizer

	Game Improvement Proof-of-Concept
	Simulation Parameters
	Simulation Output
	Derived Framework
	Optimization Algorithms

	Game Optimizer Experiments
	Basic Communication Strategy
	Problem
	Optimization

	Alternative Scoring Metric
	Problem
	Optimization

	Improved Communication Strategy
	Problem
	Optimization

	Vision Cone
	Problem
	Optimization

	Conclusions and Future Work
	Contributions
	Optimization Framework
	Proof-of-Concept Experiments

	Future Work
	Using Metrics for Game Difficulty
	Statechart Code Generation
	Cooperative Pathfinding
	Learning Player Movement
	Additional Optimizer Experiments

	Bibliography
	Appendices
	Appendix Additional figures
	Game State Output

	Appendix Additional Tables
	Combat Shooter Games - User Reviews

